

Project Olympus
Intel® Xeon® Scalable Processor

BIOS Specification

2 November 1, 2017

Author:

Mallik Bulusu, Principal Firmware Engineering Manager, Microsoft

http://opencompute.org 1

Revision History

Date Description

11/1/17 Version 1.0

2 November 1, 2017

© 2017 Microsoft Corporation.

As of November 1, 2017, the following persons or entities have made this Specification available under the Open Web

Foundation Final Specification Agreement (OWFa 1.0), which is available at http://www.openwebfoundation.org/legal/the-

owf-1-0-agreements/owfa-1-0

Microsoft Corporation.

You can review the signed copies of the Open Web Foundation Agreement Version 1.0 for this Specification at Project Olympus

License Agreements, which may also include additional parties to those listed above.

Your use of this Specification may be subject to other third party rights. THIS SPECIFICATION IS PROVIDED "AS IS." The

contributors expressly disclaim any warranties (express, implied, or otherwise), including implied warranties of merchantability,

non-infringement, fitness for a particular purpose, or title, related to the Specification. The entire risk as to implementing or

otherwise using the Specification is assumed by the Specification implementer and user. IN NO EVENT WILL ANY PARTY BE

LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL

DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION OR ITS

GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE,

AND WHETHER OR NOT THE OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTRIBUTORS AND LICENSORS OF THIS SPECIFICATION MAY HAVE MENTIONED CERTAIN TECHNOLOGIES THAT ARE MERELY

REFERENCED WITHIN THIS SPECIFICATION AND NOT LICENSED UNDER THE OWF CLA OR OWFa. THE FOLLOWING IS A LIST OF

MERELY REFERENCED TECHNOLOGY: INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI); I2C IS A TRADEMARK AND

TECHNOLOGY OF NXP SEMICONDUCTORS ; EPYC IS A TRADEMARK AND TECHNOLOGY OF ADVANCED MICRO DEVICES INC.;

ASPEED AST 2400/2500 FAMILY PROCESSORS IS A TECHNOLOGY OF ASPEED TECHNOLOGY INC.; MOLEX NANOPITCH, NANO

PICOBLADE, AND MINI-FIT JR AND ASSOCIATED CONNECTORS ARE TRADEMARKS AND TECHNOLOGIES OF MOLEX LLC;

WINBOND IS A TRADEMARK OF WINBOND ELECTRONICS CORPORATION; NVLINK IS A TECHNOLOGY OF NVIDIA; INTEL XEON

SCALABLE PROCESSORS, INTEL QUICKASSIST TECHNOLOGY, INTEL HYPER-THREADING TECHNOLOGY, ENHANCED INTEL

SPEEDSTEP TECHNOLOGY, INTEL VIRTUALIZATION TECHNOLOGY, INTEL SERVER PLATFORM SERVICES, INTEL MANAGABILITY

ENGINE, AND INTEL TRUSTED EXECUTION TECHNOLOGY ARE TRADEMARKS AND TECHNOLOGIES OF INTEL CORPORATION;

SITARA ARM CORTEX-A9 PROCESSOR IS A TRADEMARK AND TECHNOLOGY OF TEXAS INSTRUMENTS; GUIDE PINS FROM

PENCOM; BATTERIES FROM PANASONIC. IMPLEMENTATION OF THESE TECHNOLOGIES MAY BE SUBJECT TO THEIR OWN LEGAL

TERMS.

http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0
http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0
http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0
http://files.opencompute.org/oc/public.php?service=files&t=aeee8027dc207b0432c3f7feea4ece7f
http://files.opencompute.org/oc/public.php?service=files&t=aeee8027dc207b0432c3f7feea4ece7f

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 3

Contents
1 Introduction .. 8

1.1 Purpose of the Document ... 8

1.2 Structure of the Document ... 8

2 Hardware Overview .. 9

2.1 Hardware Block Diagram ... 9

2.2 Key Hardware Features .. 9

2.3 Chipset & Core Logic ... 10

2.4 Bus Configuration ... 10

2.5 Memory Configuration ... 10

2.6 System Ports ... 11

2.7 PCI Routing Information ... 11

2.8 PCH GPIO Configuration ... 11

2.9 System Clock Configuration .. 12

2.10 ACPI Configuration ... 12

3 BIOS Design Overview ... 13

3.1 BIOS Core Internals ... 13

3.2 Aptio 5.x Support Utilities... 13

3.2.1 Aptio 5.x Support Utilities: ROM Maintenance & Modification .. 13

3.2.2 Aptio 4.x Support Utilities: Manufacturing and Field Deployment.. 14

3.3 System Management BIOS (SMBIOS) ... 14

3.4 Advanced Configuration and Power Interface (ACPI) Overview .. 15

3.4.1 ACPI Tables Supported ... 15

3.4.2 System Sleep States ... 17

3.4.3 Wake Events / SCI Sources ... 17

3.4.4 EFI Shell .. 17

4 Processor Support ... 18

4.1 Reference Code Integration .. 18

4.2 Processor Initialization ... 18

4.3 CPU Steppings .. 18

4.4 Microcode Update .. 18

4.5 Intel® Hyper-Threading Technology ... 18

4.6 Enhanced Intel® SpeedStep® Technology ... 19

4.7 Direct Cache Access (DCA) .. 19

4.8 Intel® Virtualization Technology .. 19

4 November 1, 2017

4.9 Processor Cache ... 19

4.10 Cache Control ... 19

4.10.1 MTRR Initialization and Cache Enable Requirements ... 19

4.10.2 Cache Prefetcher Controls ... 19

4.10.3 Adjacent Cache Line Prefetcher .. 19

4.11 PROCHOT_RESPONSE Policy ... 19

4.12 Built-In Self-Test (BIST) ... 20

4.13 Disabling Logical Processors... 20

4.14 Processor Power Management Supported ... 20

4.15 Enhanced Intel SpeedStep® Technology ... 21

4.16 Hardware Power Management (HWPM) ... 21

5 Memory Support ... 22

5.1 Memory Initialization - Cold Boot Flow .. 22

5.2 Memory Test and ECC init Using Hardware Engine ... 23

5.3 System Memory layout ... 24

5.3.1 Memory Reservation for Memory-mapped Functions .. 24

5.3.2 High-Memory Reclaim ... 24

5.4 Memory Thermal Throttling ... 24

5.5 Memory Power and Thermal Management ... 24

5.5.1 Self Refresh .. 25

5.5.2 Memory Power Saving (Optional) .. 25

6 Integrated IO (IIO) Support .. 26

6.1 Intel® Xeon® Scalable Processor IIO ... 26

6.1.1 PCI Express General Purpose Ports .. 26

6.1.2 PCIe Slots and Bifurcation .. 26

6.1.3 PCIe Non-Slot Bifurcation .. 27

6.1.4 PCI Express Port Initialization Algorithm ... 27

6.1.5 Scan Order ... 28

6.1.6 Resource Assignment... 28

6.1.7 Automatic IRQ Assignment .. 29

6.1.8 Gen1/Gen2/Gen3 Speed Selection .. 29

6.1.9 Max_Payload_Size ... 29

6.1.10 Device and Slot Power Limits .. 29

6.1.11 ASPM Control .. 30

6.1.12 Direct Media Interface 2(DMI2) .. 30

7 PCH Support .. 31

7.1 Reference Code... 31

7.2 PCH Configuration .. 31

7.2.1 PCIe/SATA Expansion ... 31

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 5

7.3 PCH SATA ... 32

7.3.2 Handling of Hard Disk Passwords during Pre-Boot .. 32

7.4 PCH PCI Express ... 33

7.5 PCH USB ... 33

7.5.1 Removable Media Drives ... 33

7.5.2 USB Initialization .. 33

7.5.3 I/O Port 60/64 USB Support... 33

7.6 PCH Platform Thermal Features .. 34

7.7 PCH SPI Flash ... 34

8 M.2 Storage Support ... 35

8.1 BIOS Requirements ... 35

8.1.1 MMIO Resource Allocation .. 35

8.1.2 Mechanism to Identify M.2 Onboard Device ... 35

8.1.3 Mechanism to Select Bootable Device .. 36

9 Manageability ... 37

9.1 Intel® Server Platform Services (Intel® SPS) .. 37

9.1.1 BIOS Communications ... 39

9.1.2 IPMI System Interface .. 39

9.1.3 BMC to SMS interfaces. ... 39

9.1.4 Block Transfer (BT) Interface ... 39

9.1.5 Serial Port Map .. 40

9.2 Node Manager BIOS Requirements ... 41

9.2.1 BIOS POST Requirements ... 42

9.2.2 General BIOS requirements ... 45

9.2.3 Intel® ME requirements for system memory .. 46

9.2.4 Platform Power Capping .. 46

9.2.5 Platform power limit at boot policy ... 46

9.2.6 Handling Intel® ME errors .. 46

9.2.7 Intel® ME firmware status registers .. 48

9.2.8 EOP indication requirement .. 49

9.2.9 PCH thermal Management .. 49

9.3 Baseboard Management Controller (BMC) .. 49

9.3.1 LPC Interface .. 50

9.3.2 UART Interface ... 50

9.3.3 GPIO Controller .. 51

9.3.4 I2C Interface ... 51

9.3.5 SPI Controller ... 51

9.3.6 Keyboard Controller Style (KCS) Interface ... 51

9.3.7 IPMI Interface .. 51

9.3.8 SMM... 52

9.3.9 SMI Handler ... 52

9.3.10 Critical Events and System Event Log Restrictions .. 52

6 November 1, 2017

9.3.11 Watchdog Timer .. 54

9.3.12 Watchdog Timer Use Field and Expiration Flags ... 54

9.3.13 Using the Timer Use field and Expiration flags .. 55

9.3.14 BIOS Support for Watchdog Timer .. 55

9.3.15 Watchdog Timer Event Logging ... 55

9.3.16 Console Redirection with Serial Port Sharing .. 55

9.3.17 BMC and BIOS communication.. 56

9.3.18 Dynamic BIOS Configuration ... 56

9.3.19 Diagnose BMC ... 57

10 Networking ... 58

10.1 PXE boot ... 58

10.2 MAC Address .. 58

10.3 ARC Naming ... 59

11 Security ... 59

11.1 Trusted Platform Module (TPM) Initialization .. 60

11.1.1 Physical Presence .. 60

11.1.2 PCR Measurement ... 60

11.2 Secure Boot .. 61

11.2.1 UEFI Secure Boot Overview ... 61

11.2.2 UEFI Secure Boot’s Authenticated Variables ... 62

11.2.3 Secure Boot Policy ... 63

11.3 Signed BIOS Update .. 64

11.4 Intel® Trusted Execution Technology (Intel® TXT) for Servers BIOS Requirements 64

11.4.1 Summary of BIOS Initialization .. 64

11.5 Security Code Review ... 65

11.6 BIOS firmware Volume Checksum SEL log .. 65

12 Error Handling ... 66

12.1 Platform Error Handling ... 66

12.1.1 Error Sources and Types .. 66

12.2 Summary of BIOS Platform Error Handling ... 67

12.3 Memory Error Handling .. 67

12.3.1 Independent Channel Mode.. 67

12.3.2 System BIOS Responsibility ... 68

12.3.3 Faulty DIMMs .. 68

12.3.4 Correctable Errors ... 69

12.3.5 Uncorrectable Errors ... 69

12.4 NMI Generation .. 69

12.5 Enhanced Machine Check Architecture (EMCA) ... 69

12.5.1 Capability Detection .. 69

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 7

12.5.2 EMCA Generation 2 ... 69

12.6 Error Injection ... 70

12.7 WHEA Support .. 70

12.7.1 ACPI Platform Error Interface .. 70

12.8 Error Logging ... 71

12.8.1 Runtime Error Logging via SMI Handler .. 71

12.8.2 System Event Log ... 71

12.8.3 Logging Format Conventions ... 71

12.8.4 Memory Error Logging and Reporting ... 71

12.8.5 Ultra Path Interconnect (UPI) Error Events Logging Format Convention .. 72

12.8.6 PCI Express* Errors Logging Error Format Convention.. 72

12.8.7 Handling of PCIe Correctable error logging Limit .. 73

13 Firmware Update .. 74

13.1 BIOS Update Utility... 74

13.2 Signed BIOS Updates .. 74

13.3 BIOS Recovery .. 74

13.4 Back-up Partition .. 74

13.5 One BIOS Image Considerations ... 74

13.6 SEL Record .. 75

14 OS Boot Support .. 76

14.1 Software Design Specification: UEFI Operating System Support .. 76

14.2 Software Design Specification: Legacy Operating System Support .. 76

14.3 Bootable Device types .. 76

15 BIOS POST Codes ... 77

16 Field Replaceable Unit (FRU) ... 78

17 System Event Logs ... 80

17.1 System Event Logs Generated by BIOS ... 80

17.1.1 QuickPath Interconnect (QPI) Error Logging ... 80

17.1.2 Memory ECC Error Logging.. 81

17.1.3 PCI Express Error Logging .. 83

17.1.4 BIOS Update Log .. 87

17.1.5 Intel Memory Reference Code (MRC) Errors ... 88

17.1.6 Intel® Xeon® Scalable Processor IIO Module Errors .. 89

17.1.7 BIOS Firmware Volume (FV) Checksum ... 90

19.1.9 BIOS Settings change SEL event ... 91

18 Appendix: Commonly Used of Acronyms ... 93

8 November 1, 2017

1 Introduction

1.1 Purpose of the Document

The System BIOS is an essential platform ingredient which is responsible for platform initialization that

must be completed before booting of an operating system. Thus, the BIOS execution phase of the boot

process is often referred to as pre-boot phase. The purpose of this document is to provide guidance on

BIOS development for Intel® Xeon® Scalable Platform that complies with WCS specifications.

1.2 Structure of the Document

Chapter 1 provides introduction to the document.

Chapter 2 provides hardware overview.

Chapter 3 provides BIOS design overview.

Chapter 4 provides processor support requirements.

Chapter 5 provides memory support requirements.

Chapter 6 provides Integrated IO (IIO) support requirements.

Chapter 7 provides PCH support requirements.

Chapter 8 provides manageability requirements.

Chapter 9 provides NVDIMM support requirements.

Chapter 10 provides networking requirements.

Chapter 11 provides security requirements.

Chapter 12 provides error handling requirements.

Chapter 13 provides firmware update requirements.

Chapter 14 provides OS boot support requirements.

Chapter 15 provides BIOS POST codes.

Chapter 16 provides FRU information.

Chapter 17 provides descriptions of commonly used acronyms.

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 9

2 Hardware Overview

2.1 Hardware Block Diagram

The hardware block diagram for a WCS Intel® Xeon® Scalable Platform mother board is as shown below:

For additional details on WCS Intel® Xeon® Scalable Platform Hardware design, refer to WCS Hardware

Intel® Xeon® Scalable Platform Motherboard Specification.

2.2 Key Hardware Features

Key features for WCS Intel® Xeon® Scalable Platform:

• Support for up to 3 standard x16 PCIe slots

o 3 FH/HL in 1U

o 2 GP-GPU + 1 PCIe card in 2U

• Support for non-standard PCIe x24 (using 1 standard x16 slots + Oculink x8 cable)

• Support for up to 2 LP PCIe x8 slots

CPU0
10.4GT/s

10.4GT/s

PCIe x8 SLOT #1

PCIe x8 SLOT #2

CPU1

U
P

I0
U

P
I1

C
H

0
C

H
1

C
H

2
C

H
3

C
H

4
C

H
5

PE3(C
-D

)

P
E

1
(A

-D
)

D
M

I(x4)

D
IM

M

D
IM

M D
IM

M

D
IM

M D
IM

M

D
IM

M D
IM

M

D
IM

M D
IM

M

D
IM

M D
IM

M

D
IM

M

G1

G2

H1

H2
J1

J2

K1

K2
L1

L2

M1

M2

U
P

I1
U

P
I0

C
H

5
C

H
4

C
H

3
C

H
2

C
H

1
C

H
0

PC
IE1(A

-D
)

PC
IE3(A

-D
)

D
M

I(x4)

PC
IE2(A

-B
)

D
IM

MD
IM

M

D
IM

MD
IM

M

D
IM

MD
IM

M

D
IM

MD
IM

M

D
IM

MD
IM

M

D
IM

MD
IM

M

A1

A2

B1

B2
C1

C2

D1

D2
E1

E2

F1

F2

PCH

sSATA3 x1 sSATA(5)
6Gb/s

PCIe x16 SLOT #3

D
M

I(
x4

)

Gen3 x16 32GB/s
PCIe x16 SLOT #4

PCIe x16 SLOT #5

Oculink x8

P
C

IE
_

U
P

(1
5

:0
)

USB3(3)
Front Panel

USB 3.0

Front Panel
USB 3.0

USB3(2)
BIOS FLASH

32MB

TPM 2.0

SPI

10GbE
Front Panel

SFP+

50MHz

10Gb/s

480Mb/s

480Mb/s

Gen3 x16 (32GB/s)

BMC

DDR3
128MB

FW FLASH
32MBSPI

UART

DDR3

LPC LPC

SMBUS SMBUS

Gen3 x8 (16GB/s)

Gen3 x8 (16GB/s)

Gen3 x16 (32GB/s)

Gen3 x16 32GB/s

Gen3 x16 16GB/s

Internal
USB 3.0 TypeA

USB3(1)
480Mb/s

sSATA(4)

sSATA(3)

sSATA(2)

sSATA2 x1
6Gb/s

sSATA1 x1
6Gb/s

sSATA0 x1
6Gb/s

M.2 Module #2

M.2 Module #1PCIE_RP(3:0)

PCIE_RP[7:4]
Gen3 x4 (8GB/s)

Gen3 x4 (8GB/s)

x4 MINI
SAS HD

Expansion PCIe

Mgmt
Connector

Gen3 x4 8GB/s

P
C

IE
_

R
P

(1
9

:1
6

)

Gen3 x4 (8GB/s)

PE2(A
-D

)

PE3(A
-B

)

Expansion SATA
or PCIe

BIOS FLASH
32MB

x4 MINI
SAS HD

x4 MINI
SAS HD

PC
IE

_R
P

(1
5:

1
2)

USB2(4) USB2

NCSINCSI

PC
IE2(C

)

M.2 Module #3

M.2 Module #4

PC
IE2(D

)

Gen3 x4 8GB/s

Gen3 x4 8GB/s

10 November 1, 2017

o Can support up to 4 M.2 Modules through riser cards

• Support for 4 onboard M.2 Modules

• Support for 4 SATA HDDs or SSDs

• Support for x8 SATA expansion or x8 PCIe expansion

• Support for x4 PCI expansion

• Support for 1x10 GbE from PCH

• Support for Blade Management (AST1250)

• Support for x16 bandwidth QAT

• Support for Intel® Omni-Path Architecture PCIe Adapter (Storm Lake)

• Support for Datasafe storage

o NVDIMM, RAID, M.2, Intel® Optane™

• Support for WCS rack management

2.3 Chipset & Core Logic

Processor Intel® Xeon® Scalable Processors

Core Chipset Intel® C620 series chipset (PCH)

Memory

DDR4: 24 x DIMM

12 DIMMs per CPU

2 DIMMs per Channel

SAS Controller Intel® C620 series chipset (PCH)

Slots
2 PCIe x8 slots – Supports PCIe M.2 riser cards

3 PCIe x16 slots – Supports standard PCIe x16 cards

BIOS 16-MB SPI flash chip

BMC
BMC-lite BMC Aspeed AST1250
Intel® Innovation Engine

LOM 1x10GbE on QSFP+ Connector

2.4 Bus Configuration

Bus Type # of slots/Ports Bus Type # of slots/Ports

 PCI PCI Express 7

 PCI 64-bit USB 1.1/2.0/3.0 2 x 2.0 & 1 x 2.0

 PCI-X Other

2.5 Memory Configuration

Memory module type DIMM

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 11

System Memory Standard DDR4

Max. System Memory (GB) 1536 GB

No. of Memory Slots 24

BIOS Flash ROM Size (MB) 16MB Minimum.

BIOS ROM Flash Device(s) 32 MB, two parts for backup

BIOS ROM Flash Interface Serial Peripheral Interface (SPI)

2.6 System Ports

USB 4 x 2.0

UART BMC 3 x UART 16550

SATA 10 x SATA 3 Ports

2.7 PCI Routing Information

ODM to specify how the INT/PIRQ pins from the chipset are connected to each slot/device

Slot Number
(or Onboard
Device)

IDSEL
or

DEV. #

Bus

PIRQ 0

(INT A)

PIRQ 1

(INT B)

PIRQ 2
(INT C)

PIRQ 3

(INT D)

APIC
routing

2.8 PCH GPIO Configuration

GPIO pin mappings are listed in the WCS-Software-GPIO appendix. This document will detail the ASPEED

1250 and Intel® C620 series chipset (PCH) pin assignments for WCS compliance.

12 November 1, 2017

2.9 System Clock Configuration

ODM to define if the System Clock Initialization will need to be supplied unless the System
Clock Initialization is identical to an AMI supported CRB or no programming is required.

Are the system clocks run by a clock controller? (Example: CK505)

 Yes (if Yes, Continue) No (if No, Done with table)

System clock programming should be identical to the programming used on the CRB.

2.10 ACPI Configuration

Sleep State Support (list requirements) S0, S5

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 13

3 BIOS Design Overview

3.1 BIOS Core Internals

The WCS BIOS for the Intel® Xeon® Scalable Platform generation must be compliant with UEFI 2.5 and PI

1.4 specifications. The WCS Intel® Xeon® Scalable Platform BIOS must implement SEC, PEI, DXE and BDS

phases of Tiano model (see Figure below).

The WCS Intel® Xeon® Scalable Platform BIOS must implement UEFI boot and runtime services as well as

UEFI defined boot flows (see below) must be must be supported. The BIOS must support both legacy

(through CSM) and UEFI boot modes. The BIOS must also have support core support for SMM handling.

3.2 Aptio 5.x Support Utilities

These utilities are required during manufacturing, in debug, deployment, and field update phases.

3.2.1 Aptio 5.x Support Utilities: ROM Maintenance & Modification

• AMISCE

• ChangeLogo

• MMTool

14 November 1, 2017

3.2.2 Aptio 4.x Support Utilities: Manufacturing and Field Deployment

Utility Name Utility Description Supported OS
AMI Firmware
Update (AFU)

Reprogram platform flash memory with a new
ROM image. Update main BIOS image, boot
block, or “ROM holes” based on user input

MS-DOS

Microsoft Windows (32-bit)

Microsoft Windows (64-bit)

Microsoft WinPE

AMISCE AMISCE is a command line tool used to import
and export NVRAM setup data, allowing users
to modify BIOS setup values without entering
the setup interface. AMISCE uses NVRAM and
the HII database (setup questions and related
information). Data exported from the current
system BIOS is stored in a text based script
file. The script file can be modified and
imported to update the NVRAM setup
variables.

MS-DOS

Microsoft Windows (32-bit)

Microsoft Windows (64-bit)

Microsoft WinPE

3.3 System Management BIOS (SMBIOS)

The BIOS should provide support for the System Management BIOS Reference Specification, Version 3.0.
For detailed information on the System Management BIOS requirements refer to the DMTF web page at
http://www.dmtf.org/.

The BIOS must implement the following SMBIOS tables:

Type Structure

Type 0 BIOS Information

Type 1 System Information

Type 2 Base board Information

Type 3 System Enclosure or Chassis

Type 4 Processor Information

Type 7 Cache Information

Type 8 Port Connector Information

Type 9 System Slots

Type 11 OEM Strings

Type 13 BIOS Language Information

Type 16 Physical Memory Array

Type 17 Memory Device

Type 19 Memory Array Mapped Address

Type 38 IPMI Device Information

Type 41 Onboard Devices Extended Information

Type 127 End-of-Table

http://www.dmtf.org/

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 15

3.4 Advanced Configuration and Power Interface (ACPI)

Overview

The purpose of the ACPI BIOS is to supply the ACPI tables. POST creates the ACPI tables and locates them

in extended memory (above 1 MB). The location of these tables is conveyed to the ACPI-aware operating

system through a series of tables located throughout memory. The format and location of these tables is

documented in the Advanced Configuration and Power Interface Specification, Revision 6.0.

The BIOS supports ACPI 6.0. To prevent conflicts with a non-ACPI-aware operating system, the memory

used for the ACPI tables should be marked as “reserved” in INT 15h, function E820h.

As described in the ACPI specifications, an ACPI-aware operating system generates an SMI to request that

the system be switched into ACPI mode. The BIOS responds by setting up all system- (chipset) specific

configurations required to support ACPI and sets the SCI_EN bit as defined by the ACPI specification. The

system automatically returns to legacy mode on hard reset or power-on reset.

There are three runtime components to ACPI:

• ACPI Tables:

These tables describe the interfaces to the hardware. ACPI tables can make use of ACPI Machine

Language (AML), the interpretation of which is performed by the operating system. The operating

system contains and uses an AML interpreter that executes procedures encoded in AML and is

stored in the ACPI tables. AML is a compact, tokenized, abstract machine language. The tables

contain information about power management capabilities of the system, APICs, and bus

structure. The tables also describe control methods that the operating system uses to change PCI

interrupt routing, control legacy devices in the Super I/O, find out the cause of a wake event, and

handle PCI hot plug, if applicable.

• ACPI Registers:

The constrained part of the hardware interface, described (at least in location) by the ACPI tables.

• ACPI BIOS:

This is the code that boots the machine and implements interfaces for sleep, wake, and some

restart operations. The ACPI Description Tables are also provided by the ACPI BIOS.

The ACPI specification requires the system to support at least one sleep state. The BIOS supports S0 and

S5 states.

The S5 state is equivalent to operating system shutdown. No system context is saved when entering S5.

The BIOS should meet all WHCK ACPI 6.0 requirements. Please refer to: Windows Hardware Certification

Kit (HCK) and ACPI Logo Certification on: http://msdn.microsoft.com/en-us/library/windows/hardware

3.4.1 ACPI Tables Supported

The BIOS supports the following ACPI Tables. For additional information, refer to Advanced Configuration

and Power Interface Specification, Revision 6.0.

http://msdn.microsoft.com/en-us/library/windows/hardware

16 November 1, 2017

Table
ID

Description Signature

MADT Multiple APIC
Description Table

“APIC”

BERT Boot Error Record
Table

“BERT”

DSDT Differentiated
System Description
Table

“DSDT”

EINJ Error Injection
Table

“EINJ”

ERST Error Record
Serialization Table

“ERST”

FADT Fixed ACPI
Description Table

”FACP”

FACS Firmware ACPI
Control Structure

“FACS”

MSCT Maximum System
Characteristics
Table

“MSCT”

HEST Hardware Error
Source Table

“HEST”

RSDP Root System
Description Pointer

"RSDP"

RSDT Root System
Description Table

“RSDT”

SLIT System Locality
Distance Information
Table

“SLIT”

SRAT System Resource
Affinity Table

“SRAT”

SSDT Secondary System
Description Table

“SSDT”

XSDT Extended System
Description Table

“XSDT”

BOOT Simple Boot Flag Table “BOOT”

DMAR DMA Remapping Table “DMAR”

HPET IA‐PC High Precision
Event Timer Table

“HPET”

UEFI UEFI ACPI Data Table “UEFI”

SPCR Serial Port Console
Redirection Table

“SPCR”

SPMI Server Platform
Management Interface
Table

“SPMI”

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 17

MCFG PCI Express memory
mapped configuration
space base address

“MCFG”

WDDT Watchdog Timer
Description table

“WDDT”

SLIC Software Licensing “SLIC”

PMCT “PMCT”

FPDT Firmware Performance
Data Table

“FPDT”

3.4.2 System Sleep States

The platform supports the following ACPI system sleep states:

• ACPI S0 (working) state

• ACPI S5 (soft-off) state

3.4.3 Wake Events / SCI Sources

The server board supports the following wake-up sources in the ACPI environment. The operating system

controls enabling and disabling these wake sources:

• As required by ACPI specification, the power button can wake the system from all sleep states

(S5).

3.4.4 EFI Shell

The EFI shell can be used to execute EFI applications, perform diagnostics or boot to EFI supported

operating systems.

The BIOS supports EFI Shell version 2.4. The BIOS also supports Microsoft UEFI requirements for UEFI and

secure boot.

As part of the Microsoft requirements for secure boot, UEFI Shell will be disabled when the secure boot

is enabled.

18 November 1, 2017

4 Processor Support

4.1 Reference Code Integration

Latest validated Intel® Xeon® Scalable Platform CPU reference code drops released by Intel must be

integrated into the BIOS.

4.2 Processor Initialization

The BIOS must implement processor initialization flows as specified in Intel® Xeon® Scalable Platform Server

BIOS Writer’s guide published by Intel.

The BSP is responsible for executing the BIOS POST and preparing the server to boot the operating system.

At boot time, the server is in virtual wire mode and the BSP alone is programmed to accept local interrupts

(INTR driven by programmable interrupt controller (PIC) and non-maskable interrupt (NMI)).

As a part of the boot process, the BSP wakes each AP. When awakened, an AP programs its memory type

range registers (MTRRs) to be identical to those of the BSP. All APs execute a halt instruction with their

local interrupts disabled. The system management mode (SMM) handler expects all processors to respond

to an SMI.

WCS Intel® Xeon® Scalable Platform is a dual socket system. From the CPU socket population perspective,

BIOS must support boot from fully populated (CPU_0 & CPU_1) as well as single socket (CPU_0)

configurations.

4.3 CPU Steppings

Typically, the processor configurations are symmetric. In other words, both CPUs are usually of the same

stepping level. However, if mixed processor steppings are permitted by Intel, BIOS must support booting

the system from such configurations.

4.4 Microcode Update

The BIOS must load microcode into each processor during POST.

4.5 Intel® Hyper-Threading Technology

Hyper threading technology must be supported and enabled via platform BIOS policy variable.

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 19

4.6 Enhanced Intel® SpeedStep® Technology

BIOS must detect and implement EIST via BIOS policy variable.

4.7 Direct Cache Access (DCA)

BIOS shall enable DCA by default as per the Intel® Xeon® Scalable Platform System BIOS Writer's Guide.

4.8 Intel® Virtualization Technology

Intel® Virtualization Technology (Intel® VT) must be supported via platform BIOS policy variable.

4.9 Processor Cache

The L1 and L2 caches are enabled by the BIOS during POST. The BIOS should enable all levels of processor

cache as early as possible during POST. The L3 is enabled by the processor hardware and cannot be

disabled by BIOS. It is recommended that the L1 and L2 caches be left enabled.

All detected cache sizes are reported in the SMBIOS Type 7 structures. If the BIOS implements a cache

disable feature, it must also implement a cache enable algorithm.

4.10 Cache Control

It is the responsibility of the BIOS to configure the memory map and cache ability identically on all

processors to ensure cache coherency.

4.10.1 MTRR Initialization and Cache Enable Requirements

The BIOS must program the Memory Type Range Registers (MTRRs) as well as each logical processor's

CR0.CD bit to enable caching.

4.10.2 Cache Prefetcher Controls

BIOS shall support Cache Prefetcher Controls via platform BIOS policy.

4.10.3 Adjacent Cache Line Prefetcher

BIOS shall support enable/disable of Adjacent Cache Line Prefetcher via platform BIOS policy.

4.11 PROCHOT_RESPONSE Policy

BIOS shall configure PROCHOT response frequency to the maximum efficiency ratio Pn (1200 MHz).

20 November 1, 2017

4.12 Built-In Self-Test (BIST)

The BIST_ENABLE can be controlled by a BMC, GPO, strap or other mechanism. BIOS shall implement a

platform policy to control BIST execution.

4.13 Disabling Logical Processors

The Intel® Xeon® Scalable processor is implemented with 1 or more cores with each core capable of

supporting Intel® HT Technology. The result is multiple logical processors in a physical package. For various

reasons, the user may want to disable logical processors in the physical packages (for example, 1. software

licenses per logical processor per package and 2. BIST Failures). Akin to previous processor architectures

it is possible for BIOS to control the number of enabled logical processors

The table below shows a subset of the possible combinations of active logical processors that can be

achieved with BIOS managed logical processor control:

Active Logical Processor Configurations (per package)

Active Cores Intel® Hyper-Threading
Technology

Total Enabled Logical
Processors

1 Disabled 1

1 Enabled 2

2 Disabled 2

2 Enabled 4

3 Disabled 3

3 Enabled 6

4 Disabled 4

4 Enabled 8

5 Disabled 5

5 Enabled 10

6 Disabled 6

6 Enabled 12

7 Disabled 7

7 Enabled 14

8 Disabled 8

8 Enabled 16

Note: At least one core needs to be left active in each processor package.

4.14 Processor Power Management Supported

The BIOS shall support following processor controls:

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 21

• Processor power states (C-state)

• Processor clock throttling (T-state)

• Processor performance states (P-state)

C0 is an active power state where the CPU executes instructions, and other C states are processor sleeping

states where the processor consumes less power and dissipates less heat than leaving the processor in

the C0 state. The deeper C states supported includes

• C1, C1E, C3, C6

Clock throttling is a technique which can stop granting cycles to emulate a divided processor clock

frequency by controlling the clock logic.

BIOS support 8 stages of T-State.

Since P-state saves power by restricting the CPU core frequency. The deeper P states the OS selects the

more power the platform saves.

• BIOS support the following P states:

P1, P2, P3 P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15.

4.15 Enhanced Intel SpeedStep® Technology

The BIOS shall support EIST via a platform BIOS policy variable.

4.16 Hardware Power Management (HWPM)

The BIOS shall support four HWPM modes via platform BIOS policy, viz. Disable, Native Mode, Native
Mode with Legacy Support, and Out of Band Mode

- .

22 November 1, 2017

5 Memory Support

5.1 Memory Initialization - Cold Boot Flow

This section describes the high level cold-boot flow of the IMC initialization. These are the basic steps that

the Memory Reference Code does to initialize the memory subsystem. For specific register functionality

and bit definition, please refer to the appropriate processor EDS published by Intel.

1. Initialize Uncore, Platform Controller Hub (PCH), Platform specific configuration

2. Detect Reset State (cold boot, warm reset) - input to MRC

3. Get CPU data - input to MRC

4. Early Initialize Throttling

5. Detect DIMM presence and initial configuration

6. Disable TSOD polling

7. Initialize SMBus controllers

8. Read pre-selected SPD data for each DIMM

9. Read SPD device (type 0x0B) to detect DIMM presence

10. Keep track of highest common DIMM frequency per socket

11. Read min TCK, # of banks, # of ranks, raw card ID, Vdd support.

12. LVDDR4 detection, voltage adjustment for LVDIMM

13. Qualify memory configuration (check population rules, take appropriate actions)

14. Disable unpopulated channels

15. Map out DIMMs that do not confirm with DIMM population rules

16. Check DIMM geometry against JEDEC specification

17. Map out DIMMs that are not POR

18. Check DIMM rank structure

19. Initialize rank structures based on requested RAS mode

20. Evaluate requested RAS mode to ensure supported configuration

21. Configure the DDR frequency

22. Determine the highest common frequency across all sockets

23. Request a system reset if adjusting frequency is necessary

24. Configure the desired voltage level

25. Set Vdd voltage via processor or platform VRs (DDR4/DDR4L)

26. Gather detailed SPD data (DRAM timing info etc)

27. Initialize DIMM memory technology (Global early configuration)

28. Enable ECC if required

29. Channel Early Config

30. Verify if selected CAS latency is supported by each DIMM on each channel

31. Program memory timings for each channel

32. Pre DDR Training

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 23

33. Disable scrambling

34. Program ODT timing parameters

35. Set platform Vref

36. Start JEDEC initialization sequence

37. Perform DDR training

38. Post DDR Training

39. Perform DRAM memory test

40. Channel Late Configuration

41. Enable ECC if requested

42. Enable DDR scrambling

43. Perform DRAM ECC initialization

44. Finalize throttling initialization

45. Switch to normal mode

46. Initialize memory map

47. Set up RAS mode, Patrol/Demand scrubbing

48. Construct BDAT data structure if feature is enabled

49. Report DIMM information if Serial Debug Console is enabled

50. Exit

5.2 Memory Test and ECC init Using Hardware Engine

Intel® Xeon® Scalable processor has a built-in hardware memory test and init engine. Use of this engine

for memory testing is strongly recommended since it provides significantly better test coverage per time

ratio as compared to any software based memory tests. The Memtest engine tests all memory locations

using pseudo-random data patterns.

The test engine is ECC-agnostic and can flag any data mismatches and identify the failed DIMM, but it is

not capable of differentiating between single bit errors and a multi bit errors. Additional software tests

can be performed if such differentiation is desired. At the end of the memory test, the ECC will not be

corrected. Hence, the memory test should be followed by memory init. The init engine initializes all

memory locations to validate ECC. Intel® Xeon® Scalable Platforms support a feature called “data

scrambling”. This feature improves detection of DDR address bit errors and may potentially reduce power

consumption. If data scrambling is desired, the BIOS should enable this feature before ECC initialization.

Memory test and init may be executed on multiple channels simultaneously. This is expected to further

speed up memory test during system boot. The degree of parallelization can be limited by amount of

power delivery, which is a function of the system design.

24 November 1, 2017

5.3 System Memory layout

The BIOS provides the total amount of memory in the system by supporting the INT 15h, E820h function.

For additional information, refer to Advanced Configuration and Power Interface (ACPI) Specification,

Revision 2.0 for details.

5.3.1 Memory Reservation for Memory-mapped Functions

A region of size 0.25 GB of memory below 4 GB is always reserved for mapping chipset, processor and

BIOS (flash) spaces as memory-mapped I/O regions. This region will appear as a loss of memory to the

operating system. In addition to this loss, the BIOS creates another reserved region for memory-mapped

PCI Express* functions, including a standard 0.25 GB of standard PC Express configuration space. This

memory is reclaimed by the operating system if PAE is turned on in the operating system

5.3.2 High-Memory Reclaim

When 4 GB or more of physical memory is installed (physical memory is the memory installed as DIMMs),

the reserved memory is lost. However, the chipset provides a feature called High memory reclaim, which

allows the BIOS and the operating system to remap the lost physical memory into system memory above

4 GB (the system memory is the memory that can be seen by the processor).

The BIOS will always enable high-memory reclaim if it discovers installed physical memory equal to or

greater than 4 GB. For the operating system, the reclaimed memory is recoverable only when it supports

and enables the PAE feature in the processor. Most operating systems support this feature. For details,

see the relevant operating system manuals.

5.4 Memory Thermal Throttling

Thermal Throttling is a mechanism employed by the memory controller to reduce the bandwidth of

memory traffic to lower the thermal temperature of the DIMMs to protect them from overheating. BIOS

shall support two possible thermal throttling mechanisms, viz. Closed Loop Thermal Throttling (CLTT) and

Open Loop Thermal Throttling (OLTT). The specific throttling mechanism enabled shall be controlled via a

platform BIOS policy option.

5.5 Memory Power and Thermal Management

Each mode in which the Integrated Memory Controller (iMC) module will reduce performance for power

savings will be at the command of the Uncore power manager (PCU). The Uncore power manager will be

aware of collective CPU power states, Platform power states, and isochronous requirements. It will

request entry into a particular mode and the iMC module will acknowledge entry. The DDR4 power states

can be summarized as the following:

• Normal operation (highest power consumption)

- CKE Power-Down Active Power Down

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 25

- Precharge Power Down with Fast Exit (DLL-ON)

- Precharge Power Down with Slow Exit (DLL-OFF)

• Self-refresh

- IO-MDLL off

- PLL-off

• Memory Power Saving (Optional)

5.5.1 Self Refresh

The Uncore power manager may request the iMC module to place the DRAMs in Self Refresh (SR) State.

Self Refresh will not be a per channel state, all channels will either be in Self Refresh or active. The possible

changes in configuration registers are:

• SREF_enable timer

• Exit conditions

5.5.2 Memory Power Saving (Optional)

The idea of memory power saving is to manually set the memory frequency in the BIOS setup menu. There

are three options: Auto, 1066MHz, and 1333MHz which could be set. If a lower frequency is set, the

system will consume less power automatically. This feature must go through reset mechanism to activate.

26 November 1, 2017

6 Integrated IO (IIO) Support

6.1 Intel® Xeon® Scalable Processor IIO

Intel® Xeon® Scalable Processor IIO supports:

• PCI Express* Interface: Supports Gen1 (2.5Gb/s), Gen2 (5Gb/s) and Gen3 (8Gb/s) speed. When

the DMI3 port is operating as PCIe, it will operate as Gen3 x4 port-0. Refer to RS - Grantley

Platform Design Guide (PDG) for how to strap DMI2 lanes to operate as PCIe.

• DMI3 Interface to the PCH: Chip-to-chip connection between the Intel® C620 series chipset (PCH).

• Integrated IOAPICs: used to convert legacy interrupts from IO devices into messages to the CPU’s

Local APIC. Intel® Xeon® Scalable processor supports a unique IOAPIC per PCIe port. Unlike

previous platforms where only one IOAPIC is required per CPU, Intel® Xeon® Scalable Platform

requires more than one IOAPIC per CPU depending on the number of supported PCIe ports. Intel

RC introduces the name called IIO stacks where each stack has its corresponding PCIe port and a

unique IOAPIC. Please refer to Intel RC for more info about IIO stacks.

• Intel® UPI Technology: used for efficient, high bandwidth data movement interrupt between two

locations in memory or from memory to IO.

• I/O Virtualization Logic (VT-d2).

6.1.1 PCI Express General Purpose Ports

Intel® Xeon® Scalable Processor IIO module supports 48 lanes of PCIe support that can be configured as

up to 12 independent PCIe ports:

• Port-0 is either DMI3 (legacy CPU) or PCIe Gen3 x4 Port (if not connected to PCH for 52 lanes of

PCIe support).

• IOU0 is synonymous with Port-2, 1 x16 PCIe Gen3 port but can be bifurcated down to 2 x8 or 4

x4.

• IOU1 is synonymous with Port-3, 1 x16 PCIe Gen3 port but can be bifurcated down to 2 x8 or 4

x4.

• IOU2 is synonymous with Port-1, 1 x16 PCIe Gen3 port but can be bifurcated down to 2 x8 or 4

x4.

6.1.2 PCIe Slots and Bifurcation

There are five PCIe slots configured by the BIOS. The table below shows the width and possible

bifurcations for the five slots.

Slots CPU Port# Width Bifurcation

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 27

1 0 Port 3A X8 1x8 or 2x4

2 0 Port 3C X8 1x8 or 2x4

3 0 Port 1A X16 1x16, 2x8, or 4x4

4 1 Port 1A X16 1x16, 2x8, or 4x4

5 1 Port 3A X16 1x16, 2x8, or 4x4

6.1.3 PCIe Non-Slot Bifurcation

There are nine PCIe non-slot bifurcations required for WCS Intel® Xeon® Scalable Platform to support

below key features:

• Support for non-standard PCIe x24 (using 1 standard x16 slots + Oculink x8 cable)

• Support for 4 onboard M.2 Modules

• Support for 3 x4 PCI expansion

• Support for x16 bandwidth QAT

Component Port# Width Bifurcation

CPU 0 Port 2A X16 1x16

CPU 1 Port 2A X8 1x8

CPU 1 Port 2C X4 1x4

CPU 1 Port 2D X4 1x4

CPU 1 DMI as x4 PCIe X4 1x4

PCH Port 0 X4 1x4

PCH Port 4 X4 1x4

PCH Port 12 X4 1x4

PCH Port 16 X4 1x4

6.1.4 PCI Express Port Initialization Algorithm

The BIOS should be aware of the number of logical PCIe ports present on the system. Of the set of ports

present, to determine which ports are operational, BIOS must read and interpret how the PCIe interface

is strapped. Handshake signaling during hardware training will detect lane designations to determine

whether attached devices are communicative, and the link width in which they trained. The steps required

to initialize the PCIe ports are

• For each IOUx (x=1/2/3) grouping, program bits[2:0] (bits[1:0] for IOU2) in the

PCIE_IOUx_BIF_CTRL (Dev 1/2/3:Func 0:Offset_190h Word) register to the desired configuration.

• Set bit 3 in the same PCIE_IOUx_BIF_CTRL register to initiate the port training.

• Check the LNKSTS (Offset A2h) register bit[13] to see if training has completed. If it has not

completed within 50ms of initiating training, then set LNKCON (OffsetA0h) register bit[4] to

disable the link.

28 November 1, 2017

• Determine the widths of any links that have successfully trained. Read LNKSTS register bits[9:4]

to determine the widths.

• Where the platform connects a slot to the port, set SLTCAP (Offset A4h) register bits[31:19] with

a unique slot number.

• Repeat steps 2-5 for each configured PCI Express port.

By the end of this platform initialization step, BIOS will have a mapping of which ports came up in their

full native configuration, which came up in a failed-down operating mode, and which failed completely to

initialize. Support will be required in the boot ROM/FLASH and/or in NVRAM to store what a “full

configuration” should look like for the platform in order to enable BIOS to distinguish “partial”

configurations after link-up and after future hard reset sequences.

Upon completion of this sequence, the IIO PCI Express hierarchies are capable of running a standard PCI

enumeration cycle

6.1.5 Scan Order

The BIOS assigns PCI bus numbers in a depth-first hierarchy, in accordance with the PCI Local Bus

Specification, Revision 3.0. The bus number is incremented when the BIOS encounters a PCI-PCI bridge

device. Scanning continues on the secondary side of the bridge until all subordinate buses are assigned

numbers. PCI bus number assignments may vary from boot to boot with varying presence of PCI devices

with PCI-PCI bridges. If a device with a bridge with a single bus behind it is inserted into a PCI bus, all

subsequent PCI bus numbers below the current bus are increased by one.

The bus assignments occur once, early in the BIOS boot process, and never change during the pre-boot

phase.

6.1.6 Resource Assignment

The BIOS resource manager assigns the PIC-mode interrupt for the devices that are accessed by the legacy

code. The BIOS will ensure the PCI BAR registers and the command registers for all devices are correctly

set up to match the behavior of the legacy BIOS after booting to a legacy operating system. Any legacy

code cannot make any assumption about the scan order of devices or the order in which resources are

allocated to them. The BIOS supports the INT 1Ah PCI BIOS interface calls.

6.1.6.1 IIO Resource Allocation

Due to the split IIO design implemented in Intel® Xeon® Scalable Processors, resources such as MMCFG,

MMIOL, MMIOH, Legacy IO, IOAPIC are assigned individually to each IIO/MCP stack in each socket. WCS

platform uses two CPU sockets with no MCP. Therefore, there will be 8 stacks with each IIO having 4

stacks.

By default, all resources are evenly distributed across the enabled stacks. For MMIOL, the evenly

distributed values will be too low for add-in cards that need more resources. One case is for the graphics

cards. When the prefetchable BAR is forced to below 4GB for legacy boot mode (for some card even for

UEFI boot mode) for VGA/VESA using 32 bits address, the out of resource situation will cause the system

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 29

to reboot in order to adjust the resources. The reboot happens very late in boot phase which results

almost double the boot time.

This MMIOL situation can also be an issue for hot plug support. Padding resources need to be allocated

in advance for the root ports that need hot plug support. Evenly distributed resources will not meet the

resource demand of hot plug support.

Therefore, WCS has added the BIOS functionality to pre-allocate MMIOL to IIO stacks. A setup screen

“OEM IIO MMIO Low” has been created. The default values can be pre-allocated for the actual resource

demands. For more setup details, see Chapter 15 Configuring Platform BIOS (Aptio Setup).

6.1.7 Automatic IRQ Assignment

The BIOS automatically assigns IRQs to devices in the system. No method is provided to manually

configure the IRQs for devices.

6.1.8 Gen1/Gen2/Gen3 Speed Selection

In general, IIO will negotiate Gen1 vs. Gen2 vs. Gen3 speed per the inband mechanism defined in the Gen3

PCI Express Specification. In addition, IIO can be prevented from negotiating Gen3 or Gen2 speed if Gen2

or Gen3 fuse is blown, that is, Gen2 or Gen3 is disabled, none of the ports would ever train to Gen2 or

Gen3, even if software attempted it.

6.1.8.1 Gen2 Configuration

When the link is operating at Gen2 speed, BIOS may need to configure the level of de-emphasis for an

upstream component by programming the LNKCON2 (Dev 1-10:Func0:Offset C0h) register bit[6].

Note: If a PCIe link does not train up to full width, it is recommended to perform a Secondary Bus Reset

on the link to get it full width.

6.1.9 Max_Payload_Size

IIO will support a Max_Payload_Size of 256B.

6.1.10 Device and Slot Power Limits

All add-in devices must power-on to a state in which they limit their total power dissipation to a default

maximum according to their form-factor (10W for add-in edge connected cards). When BIOS updates the

slot power limit register of the root ports within the IIO, the IIO will automatically transmits a

Set_Slot_Power_Limit message with corresponding information to the attached device. It is the

responsibility of platform BIOS to properly configure the slot power limit registers in the IIO. Failure to do

so may result in attached endpoints remaining completely disabled in order to comply with the default

power limitations associated with their form-factors.

30 November 1, 2017

6.1.11 ASPM Control

The BIOS should provide a user option to enable disable ASPM.

6.1.12 Direct Media Interface 2(DMI2)

The Direct Media Interface 2 (DMI2) is the connection between the processor and Intel® C620 series

chipset (PCH). The DMI is an extension of the standard PCI Express specification with special

commands/features.

6.1.12.1 Direct Media Interface Configuration

The configuration registers for the DMI port reside in an Root Complex Register Block (RCRB) and adhere

to the capability structures formats outlined for internal links as defined by PCIe* specification. DMIRCBAR

defined the DMI RCRB Base Address. BIOS must program the DMI interface DMIRCBAR and must allocates

on a 4KB boundary. System BIOS must also enable DMIRCBAR. The address ranges must be reserved and

reported using ACPI_CSR objects.

6.1.12.2 Virtual Channel

VCO, VC1, VCm, and VCp are supported. VC0 traffic is handled as snoop/non-snoop based on NS bit in

DMI packet. Use of VC1 for true isochronous. VCm for Intel® Managability Engine (Intel® ME). Private

Virtual Channel VCp for legacy isochronous traffic.

Virtual Channel configuration must be configured on both sides of the link and must match in terms of the

number of VCs, VC ID, and TC/VC mapping. This document covers only the SA side of the DMI port. Please

refer to PCH BIOS Specification for details related to configuration on the PCI side of the link.

The virtual channel 1 configuration for the DMI port must be programmed by the BIOS to ensure that the

PCH is enabled for Isoch/VC1 operation. Please refer to PCH BIOS Specification for details on when VC1 is

enabled on the PCH.

6.1.15.3 PCI-e Tuning for Gen3

The BIOS has to be ported to support PCI-e tuning (CTLE values) for PCI-e slots on the WCS platform. The

BIOS need to be validated with all WCS supported PCI Gen3 cards (ex: FPGA and M2 PCIe cards).

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 31

7 PCH Support

PCH configuration is platform-specific, including GPIO initialization, PCIe root ports, ME, IOAPIC, etc. BIOS

follows intel guidelines to program and configure PCH devices for Olympus hardware platform.

7.1 Reference Code

Intel® Xeon® Scalable Platform BIOS must have complete support for Intel® C620 series chipset (PCH)

reference code provided by Intel. This should also include PCH policy management provided by Intel.

7.2 PCH Configuration

Flexible high speed I/O lanes may be configured for different interface: SATA, sSATA, USB3, 1GbE, and

PCIe Root Ports. Based on the description of Olympus hardware block, the following flexible I/O ports

should be configured as below to meet the platform needs.

• Flexible I/O ports 1-3 should be configured for USB3.

• Flexible I/O ports 19-26, listed on the hardware schematics as PCIE_RP[12-15], PCIE_RP[16-19],

are wired to two MiniSAS-HD x4 connectors. They can be configured dynamically either as two

PCIe Gen3 2X4 expansion from PCH root ports or as SATA expansion ports. See the next section

for more details.

• Flexible I/O ports 15-18 should be configured for sSATA ports 2-5.

• Flexible I/O ports 7-10 are configured as PCIe Root Port 0 for Gen3 x4 M.2 module 1 and flexible

I/O ports 11-14 as PCIe Root Port 4 for Gen3 x4 M.2 module 2.

Note that QAT and 10 GbE are internal devices, separate from flexible I/O ports. BIOS should configure

QAT as a 1x16 PCIe device and enable 10 GbE device.

7.2.1 PCIe/SATA Expansion

As listed above, the two MiniSAS-HD x4 connectors can be configured dynamically either as two PCIe Gen3

2X4 expansion from PCH root ports or as SATA expansion ports.

Eight PCH GPIO pins are assigned to be dedicated to do the hardware control to configure the eight flexible

high speed I/O lanes either as PCIe or SATA. BIOS uses ME tool spsFITc to program the settings of the soft

strappings for the eight flexible high speed I/O lanes as “Assigned based on GPIO pin polarity”. At the BIOS

build time, the programmed soft strappings are integrated into the descriptor region of ME in the BIOS

SPI flash image. At an AC cycle, the soft strappings are loaded by the suspend power rail before the point

of time when reset vector gets loaded. Depending on the polarity of the eight PCH GPIO pins, the eight

flexible high speed I/O lanes will be configured accordingly.

32 November 1, 2017

On BMC side, there are two BMC GPIO pins that each control four of the eight PCH GPIO pins. The goal is

to be able to configure on the granularity of four lanes. Therefore, if needed, four lanes can be configured

as PCIe while the other four lanes can be configured as SATA, though there will less likely be such a SKU.

There are no jumpers on the board for this functionality.

For history, other approaches were considered other than using eight GPIO pins as above because there

were short of GPIO pins at the beginning. One was to change the soft strapping in BIOS code or to use the

same mechanism as the flash update tool. The other one was to use two BIOS binaries, one for each of

PCIe and SATA. The first approach was not compliant with Intel PCH security guide line. The other

approach was not good because BIOS has the policy of using one BIOS binary that is provisioned

dynamically for different EGs.

7.3 PCH SATA

The BIOS initializes the embedded SATA controllers in the chipset and any SATA devices that are

connected to these controllers. From a software standpoint, SATA controllers present the same register

interface as the PATA controllers. Hot plugging of SATA drives during the boot process is not supported

by the BIOS and may result in undefined behavior.

7.3.1.1 Compatible Mode

A controller that operates in compatible mode emulates a legacy IDE controller, which is a nonstandard

extension of the ISA-based IDE controller. In compatible mode, the controller requires two ISA-style

dedicated IRQs (14 and 15) that cannot be shared with other devices. Because compatible mode requires

dedicated resources, the ATA controller for the boot device (which is usually integrated in chipsets on the

motherboard) is the only controller on a system that is likely to operate in compatible mode.

7.3.1.2 Native Mode (a.k.a Enhanced Mode)

A controller that operates in native mode acts as a true PCI device that does not require dedicated legacy

resources and can be configured anywhere in the system. ATA controllers running in native mode use

their PCI interrupt for both channels and can share this interrupt with other devices in the system, like

any other PCI device. Add-in ATA controllers generally operate in native mode

7.3.1.3 AHCI Mode

AHCI gives software developers and hardware designers a standard method for detecting, configuring,

and programming SATA/AHCI adapters. AHCI is separate from the SATA standard, although it exposes

SATA's advanced capabilities (such as native command queuing). AHCI should be the default mode for

WCS.

7.3.2 Handling of Hard Disk Passwords during Pre-Boot

The data stored on disks can be optionally protected via passwords at a hard disk level. The challenge

mechanism in such storage devices is implemented within the firmware on the hard disk. This feature

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 33

necessitates user intervention during pre-boot, which is not desired on WCS Servers. During the discovery

phase of hard disks, it is mandatory that BIOS skips the enumeration of those devices that are password

protected and thus implement a seamless boot experience.

7.4 PCH PCI Express

There are no PCI Express slots from Intel® C620 series chipset (PCH).

7.5 PCH USB

7.5.1 Removable Media Drives

The BIOS supports booting from USB mass storage devices connected to the chassis USB port, such as a

USB flash drive device. The BIOS supports USB 2.0 media storage devices that are backward compatible

to the USB 1.1 specification.

7.5.2 USB Initialization

During the power on self-test (POST), the BIOS initializes and configures the USB subsystem.

The BIOS should be capable of initializing and using the following types of USB devices:

• USB Specification-compliant keyboard and mouse.

• USB Specification-compliant mice

• USB Specification-compliant storage devices that utilize bulk-only transport mechanism

o Bootable USB flash drive

o Bootable USB hard drive

o Bootable USB optical drive

USB devices are scanned to determine if they are required for booting.

The BIOS supports USB 1.1 and USB 2.0 compliant devices and host controllers.

During the pre-boot phase, the BIOS should support the hot addition and hot removal of USB devices. For

example, if a USB device is hot plugged, the BIOS should detect the device insertion, initializes the device,

and makes it available to the user. Onboard USB controllers should be initialized by BIOS. This should not

prevent the operating system from supporting available USB controllers, including add-in cards.

7.5.3 I/O Port 60/64 USB Support

The BIOS should support PS/2 emulation of USB keyboard and mouse via I/O Port 60/64 by generating

the IRQ1 / IRQ12. Emulation has to handle keyboard data, keyboard commands, mouse data, mouse

commands and KBC commands.

34 November 1, 2017

7.5.3.1 Emulation disabled without KBC

The USB Keyboard data will be placed in the BDA keyboard buffer. The application accesses to the I/O

port 60/64 to get data will fail and accesses to data from the IRQ handler will also fail. Mouse data will

not be used at all. All the commands sent to the KBC and devices will fail.

• Keyboard Data

- USB Int9 (converts into PS2 format ASCII/SCAN code and place it BDA KBD buffer).

• Mouse Data

- Not used.

• Keyboard & Mouse Command to KBC (I/O Port 60/64)

- Not handled.

7.5.3.2 Emulation Enabled without KBC

• Keyboard Data

- USB Int9 (converts into PS2 format ASCII/SCAN code and place it BDA keyboard buffer).

- USB scanner (converts into IBM standard SCAN code).

- Emulation driver sends via I/O Port 60/64 by Generating the IRQ1.

• Mouse Data

- Emulation driver sends via I/O Port 60/64 by Generating the IRQ12

• Keyboard & Mouse Command to KBC (I/O Port 60/64)

- Emulation Driver sends to PS2 and USB

7.6 PCH Platform Thermal Features

See the later chapter of “Manageability” in the section of “PCH thermal Management”

7.7 PCH SPI Flash

There are two 32 MB flash parts for BIOS. See the hardware specifications for details.

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 35

8 M.2 Storage Support

The BIOS must support M.2 storage devices, viz. M.2 NVMe and M.2 AHCI. This should include detection

of M.2 storage devices during pre-boot. BIOS must also support booting from M.2 devices both in

compatibility mode (Legacy) as well as native (UEFI) mode. The M.2 devices must be detected

automatically as PCIe x4 devices.

8.1 BIOS Requirements

To support this new approach, BIOS must implement necessary changes to ensure enough MMIO

resources being allocated for all M.2 devices, to define a mechanism for optionally selecting a specific M.2

device as bootable, and to define a mechanism for visually identifying a specific M.2 device location

reported in SEL or OS.

8.1.1 MMIO Resource Allocation

M.2 device supports non-prefetchable 64-bit MMIO address. However, Mt. Olympus platform supports

only 64-bit MMIO prefetchable address. To ensure enough MMIO resources being allocated for all M.2

devices and any future increase in number of M.2 devices, BIOS should enable 64-bit MMIO setup option

as default. This default option allows any prefetchable 64-bit MMIO capable devices being allocated with

64-bit MMIO resources and provides more 32-bit MMIO resources available for M.2 devices.

8.1.2 Mechanism to Identify M.2 Onboard Device

Mt. Olympus may support any onboard devices, which directly connect to any Root Ports from PCU or

CPU. The platform configuration support[TBD] for onboard devices defines the M.2 disk logical location

diagram, which provides a map of how the disk logical location number for each onboard device should

be configured in bits [31:19] of its corresponding Root Port’s slot capabilities register. Once the M.2 disk

logical location diagram is defined, BIOS can read the disk logical location number from the Root Port’s

slot capabilities register when reporting any uncorrectable error generated by a specific M.2 onboard

device in byte 16 of PCIe extended SEL as formatted below. Note that bits [7:5] of byte 16 must be zero

and bits [4:0] of byte 16 holds the disk logical location number for M.2 onboard device.

36 November 1, 2017

8.1.3 Mechanism to Select Bootable Device

To support selection of a specific bootable M.2 device, BIOS can use the existing Boot Option

Configuration to specify the M.2 disk logical location, as mentioned in section 8.1.2. The format of defining

which specific bootable onboard M.2 device is described in Data 2 and Data 5 as below:

• Data 2 [5:2] should be 0010b (Force Boot from Default HD)

• Data 5 [7:5] as RSVD

• Data 5 [4:0] should be M.2 disk logical location

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 37

9 Manageability

9.1 Intel® Server Platform Services (Intel® SPS)

Intel® SPS is the name for the firmware stack running on the PCH in Intel® Xeon® Scalable Platforms. The
Intel® Managability Engine (Intel® ME) and Intel® SPS FW are mandatory component on Intel® Xeon®
Scalable Platforms.

Intel® SPS Functions in one of the following modes:

• Silicon Enabling (SiEn):
Basic hardware configuration functionality supports HECI-1 and IPMI interfaces. Silicon enabling
is the base configuration.

• Node Manager (NM):
Implements Node Manager functionally with an IPMI interface

• Datacenter and Node Manager (DNM):
Implements DCMI and Node Manager functionally with an IPMI interface

WCS platforms utilize the Node Manager (NM) mode.

The figure below shows the interfaces that are used by ME FW to communicate with other FW/SW
components:

38 November 1, 2017

Interfaces

HECI interface

- Used for BIOS (HECI-1) and OSPM (HECI-2) interaction

SPI interface

- SPI flash access

SMBus interface

- BMC (IPMI bridging), HSC, Sensors

The Intel® ME interfaces with multiple FW/SW components in the system to perform its functionality;

the following is a description of some of these interfaces:

- HECI-1 interface: This interface shows up as a host PCI device.

- ME Interacts with the BIOS during POST. ME FW uses DCMI-HI over HECI 1 as its channel

for DM in-band communications.

- HECI 2 supports run-time (SMI/SCI) communication with the ME.

- PECI interface is used for sending PECI commands to the CPU (read/write MSRs)

- SPI the ME communicates with Flash using the SPI interface.

- SM Line 1, can be used for board sensor (LM75) support. The ME is the master on the bus.

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 39

- SMBUS (STM1), Intel® ME is the master on the bus the default address should be 0x48.

Bus provides sensor access.

- ME has GPIO read support.

- FRU: Intel® SPS firmware provides an internal FRU stored in the ME SPI flash. This is

accessible via SMLink 1 using the Master Read-Write IPMI command.

9.1.1 BIOS Communications

HECI provides a mechanism for BIOS to communicate with the Intel® ME. HECI is bi-directional

asynchronous interface for passing messages between the BIOS and ME FW.

In addition, HECI also provides a mechanism for BIOS to communicate with the Innovation Engine,

which is an in-situ PCH feature that replaces BMC. For the Intel® Xeon® Scalable Platform BIOS, the

BIOS should support IPMI messaging/communication over HECI in order to implement all BIOS-IE

interactions that are functionally equivalent to BIOS-BMC interactions.

9.1.2 IPMI System Interface

The BIOS should enable the System Interface to the BMC in early POST for the logging of POST errors

and events.

Due to AST1250 needing 3-5 seconds to decompress its firmware from flash memory and boot to

embedded OS when AC on, BIOS power on may have to wait up to 60 seconds before it can send the first

command to BMC.

9.1.3 BMC to SMS interfaces.

The KCS interface is specified solely for SMS messages. SMM messages between the BMC and an SMI

Handler will typically require a separate interface, though the KCS interface is designed so that system

software can detect if a transaction was interrupted. The KCS Interface is designed to support polled

operation. For further information and implementation guidance: Refer to the IPMI 2.0 specification

section 9 Keyboard Controller Style (KCS) Interface.

9.1.4 Block Transfer (BT) Interface

The BT interface is a supported BMC to SMS system interface. The BT Interface buffers blocks of

message data is before the management controller of available data. This is different from the SMIC

and KCS interfaces, which are byte-transfer oriented.

The host side of the BT Interfaces designed for interrupt or polled operation. Implementations can

elect to provide a system interrupt from the assertion of the B2H_ATN or SMS_ATN (BMC -to-Host

attention or System Management Software attention) states. Note that implementing an interrupt

must not preclude driver software from the using the interface in a polled manner.

40 November 1, 2017

The Host interface to the baseboard management controller (BMC) requires a block of 3 contiguous

I/O locations on the system board. (A reference implementation fixes this at locations E4h:E6h. The

interface circuitry will decode the lower 2 address lines, SA[1..0]). A general -purpose chip select will

be used to generate the select line for the interface, which is to reside in system I/O space. The I/O

address offsets are defined as follows

Offset Read Write

0 BT_CTRL – Control
Register

1 BMC2HOST buffer HOST2BMC buffer

2 BT_INTMASK –
interrupt mask register

The BT interface provides support for implementations that allow the submission and asynchronous

completion of commands.

Request Messages are sent to the BMC from system software using a write transfer through the BT

Interface. The message bytes are organized according to the following format specification:

BT Interface/BMC Request Message Format

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5:N

Length NetFn/Lun Seq Cmd Data

Reference IPMI Specification, Version 2.0, Section 11.1 BT Interface-BMC Request Message Format.

BMC-BT Interface Response Message Format
Response Messages are read transfers from the BMC to system software via the BT Interface. Note that
with a few exceptions (e.g., Cold Reset command) the BMC always returns response to a request delivered
via the BT interface in order to deliver the completion code, regardless of whether the response has data
in the Data field. The message bytes are organized according to the following format specification:

BT Interface/BMC Response Message Forma

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6:N

Length NetFn/Lun Seq Cmd Completion Code Data

Reference IPMI Specification, Version 2.0, Section 11.2 BMC-BT Interface Response Message Format.

9.1.5 Serial Port Map

The AST1250 provides three sets of virtual UART controllers, which comply with 16550. Each UART

controller has in-built 16x8 transmit FIFO buffer and 16x8 receive FIFO buffer, both can be enabled or

disabled. Control signals:

Signal IO Type Description

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 41

NCTS Input CMOS clear to send modem status

NDCS Input CMOS data carrier detect modem status

NDSR Input CMOS data set ready modem status

NRI Input CMOS ring indicator modem status

NDTR Output CMOS data terminate ready modem status

NRTS Output CMOS request to send modem status

TXD (Must) Output CMOS transmit serial data output

RXD(Must) Input CMOS receive serial data input

Intel® Node Manager Hardware Requirements:

9.2 Node Manager BIOS Requirements

The BIOS modifications for the Intel® Server Platform Services Intel® ME firmware will contain:

Common Intel® ME features:

 Intel® ME firmware feature query

 MCTP over PCIe

 HECI-1 initialization

 Disabling Global Platform Reset capabilities

 Integrated Clock Controller (ICC) programming

 Clearing ME_WAKE_STS in PRSTS

Power limiting functionality for Intel® NM:

 Initialization message with CPU configuration

 HECI-2 initialization

 BIOS runtime requirements:

o ASL code to handle P-state/T-state limit changes

o ASL code to handle dynamic CPU core idling requests

o ASL code to provide Power Meter functionality

The Intel® ME will only receive messages via HECI-1 from the single System Boot Strap Processor

running the system BIOS code

For the Node Manager Fast NM Limiting, the following settings shall be used:

Parameter Description

Fast NM Limiting
enabled

true – fast limiting enabled

Fast ramp down step Ramp generation step in 1/8 Watt per CPU every 10 ms

42 November 1, 2017

Fast ramp up step Ramp generation step in 1/8 Watt per CPU every 10 ms

Fast ramp delay Delay before starting ramp generation as a multiplier of the pooling
interval

Polling interval Polling interval:
1=>10ms

9.2.1 BIOS POST Requirements

The BIOS POST modifications for the Intel® Server Platform Services Intel® ME firmware are described

for all firmware variants:

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 43

Reset

Wake event clear

Send DRAM_INIT_DONE

Memory
Initialization

Check ME BIOS
compatibility

Read MEFS1 register

Check MEFS1
Initialization < 2 seconds

HECI initialization

Get ME BIOS Interface
Version from ME

ME Disabled
error reported

or timeout

Check MEFS1

ICC programming

Enable PCH thermal sensor

NM cores disable request

If NM enabled
send CPU Discovery data

MCTP Bus Owner Proxy
Configuration

ME is operational

ME in recovery

Incompatible

Compatible

Send HMRFPO_LOCK
message: save the nonce

Send EOP message

Hide ME PCI funcations
based on firmware variant

Disable Global Platform
Reset

Boot OS

Disable HECI

(E1) (E2)

(A0)

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(E3)

(E5)

(A7)

(A8)

(A9)

(A10)

(A11)

(A12)

(A13)

(A14)

(A15)

(A16)

(E4)

NM booting mode request

Optional block

Required block

BIOS POST Requirements

(A0) At reset BIOS receives control at the architectural reset vector

(A1) BIOS must initialize PCH power management by clearing the PCH wake reason in

ME_WAKE_STS in the PRSTS configuration register see [EDS]. This bit must be cleared to

allow platform shutdown.

(A2) BIOS reads the mode of booting from the Intel® NM Firmware Status register in HECI-2

interface and sets proper BIOS booting mode. Two modes are supported Performance

and Power Optimized.

44 November 1, 2017

(A3) After BIOS configures UPI, memory and MCTP it sends the DRAM_INIT_DONE message

to Intel® ME.

(A4) BIOS reads Intel® ME Firmware Status #1 register in HECI-1 interface to learn the state of

the firmware running in Intel® ME

(E1) If the register indicates that Intel® ME firmware is initializing, BIOS returns to step (A4).

The timeout to exit this loop is 2 seconds.

(E2) If the register indicates that Intel® ME firmware is in one of the states:

Hard Intel® ME –Disabled

Nonzero Error Code is reported

or if the 2 seconds timeout elapses BIOS continues boot procedure without

communication with Intel® ME. At the end BIOS needs to jump to step (E5) and

disable Intel® ME functions on PCI.

(A5) BIOS initializes HECI interfaces

(A6) If the Intel® ME Firmware Status #1 says that Intel® ME runs Intel® SPS firmware in

operational or recovery mode BIOS sends to Intel® ME “Get ME-BIOS Interface Version”

message to check Intel® ME-BIOS interface definition compatibility and supported

firmware features. In case Intel® ME runs in recovery mode, all Intel® ME features are

disabled.

Implementation Note: Intel® ME -BIOS interface version used by Intel® ME operational

and recovery firmware may differ if operational firmware was updated and recovery not.

Thus, BIOS may need to support a range of Intel® ME-BIOS interface versions

(E3) If BIOS and Intel® ME firmware are not compatible, BIOS logs error for user, disables all

HECI functions and jumps to step (E4) without any more communication with Intel® ME.

(E4) It is expected that BIOS POST should inform the user about any problem with Intel® ME

communication. At minimum MEFS1 and MEFS2 should be logged so user is warned

about any problem with Intel® ME firmware initialization.

(E5) If MEFS1.CurrentState indicates that Intel® ME firmware runs in recovery mode BIOS

jumps to step (A11).

(A7) BIOS can configure selected Integrated Clock parameters. This step is optional. It is not

required when the ICC settings provided into FITc during Intel® ME region image creation

do not require any adjustments.

(A8) BIOS enables PCH thermal sensor

(A9) When Intel® NM is enabled BIOS reads from the NMFS the number of CPU cores that

should be disabled in each processor package.

(A10) When Intel® NM is enabled in Intel® ME firmware, BIOS sends the host configuration

information to Intel® ME. The information whether Intel® NM functionality is enabled

can be found in Get Intel® ME BIOS Interface Version response

(A11) If MCTP Bus Owner Proxy capability is enabled in Intel® ME firmware BIOS sends Set

MCTP Bus Owner Proxy Configuration HECI message to Intel® ME

(A12) If Direct Intel® ME Firmware Update is supported BIOS sends HMRFPO_LOCK message to

retrieve the nonce word from Intel® ME firmware and protects the Intel® ME region area

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 45

with SPI Protected Range Register (PRx). Nonce could be then used to perform the Direct

Intel® ME Firmware Update and should be preserved in the memory region hidden and

protected from the OS (SMM memory region).

Implementation Note: Since SMM memory is locked before option ROMs execution, this

step also needs to be done before Option ROMs execution.

(A13) BIOS sends END_OF_POST message to Intel® ME to indicate that OS is to be loaded.

(A14) BIOS disables or hides Intel® ME devices

(A15) BIOS disables Global Platform Reset capability in PCH to prevent OS from

initiating Global Platform Reset

(A16) BIOS invokes OS loader

For further information on BIOS POST requirements, please refer to the Intel® Server Platform Services

(Intel® SPS) Firmware Intel® ME BIOS Interface for Grantley.

9.2.2 General BIOS requirements

Id Description

G1 BIOS must check in the MEFS1 and MEFS2 registers whether Intel® ME is functional. If

not, it should skip all Intel® ME-related tasks. Note: The BIOS should log this event in the

BMC System Event Log.

G2 BIOS should log and display MEFS1 and MEFS2 if error is detected in the MEFS1.Error

Code. The BIOS should also add a record to the BMC System Event Log

G3 BIOS must send the register based DRAM_INIT_DONE message to Intel® ME

G4 System BIOS should send SPS_GET_MEBIOS_INTERFACE message to Intel® ME firmware

and check the Intel® ME-BIOS compatibility

G5 When IPMI sensor for PCH Thermal Sensor is enabled in Intel® ME firmware BIOS must

configure and enable the sensor in PCH

G6 BIOS must hide Intel® ME devices from OS

G7 System BIOS must send END_OF_POST message to Intel® ME via HECI-1

G8 BIOS must execute the Warm Reset Notification subflow during each S0 entry procedure

BIOS requirements for Intel® NM enabled firmware

Id Description

NM1 BIOS should support performance vs. power optimized POST execution.

NM2 BIOS must pass processors configuration data via HECI-1 interface

NM3 BIOS must initialize the HECI-2 interface.

NM4 BIOS must implement performance change notifications support in ACPI tables

NM5 BIOS should implement processor utilization notifications support in ACPI tables

NM6 BIOS must support UEFI EDK II Framework with MP Services Protocol in order to support

Intel® NM Power Thermal Utility

46 November 1, 2017

NM7 If BIOS Thermal Utility feature is desired, the BIOS must opt-in to support Intel® NM

Power Thermal Utility. This is required for Intel® NM to support the Intel® NM Power

Thermal Utility feature. This feature is not required in WCS

NM8 BIOS should implement HW change notification via HECI-1 interface.

NM9 BIOS must check the signature in Expansion ROM Header of the Intel® NM Power

Thermal Utility

NM10 BIOS must send Intel® NM Host Configuration is before PCI enumeration.

NM11 BIOS must send Intel® NM Host Configuration message at least 2 ms before PCI

Enumeration. This is required for successfully launching Intel® NM Power Thermal

Utility Expansion ROM

9.2.3 Intel® ME requirements for system memory

HECI-1 MISC_SHDW register defines an interface for Intel® ME to request BIOS to allocate a block of

system memory for Intel® ME use. This block of memory is called Intel® ME UMA. Intel® SPS firmware

does not use the Intel® ME UMA so it always requests for zero bytes of Intel® ME UMA.

9.2.4 Platform Power Capping

The Intel® ME should be support Fast NM (Node Manager) power capping.

To enable this feature, sample averaging for power must be disabled in the Hot Swap Controller.

On the ADM1278 Hot Swap Controller, the register to be configured is at address 0xD4 (PMON_CONFIG).

The PWR_AVG bits (bits [13:11]) should be set to ‘b000.

This will disable sample averaging for power in the HSC and improve Fast NM Limiting reaction time.

9.2.5 Platform power limit at boot policy

Intel® ME FW implements platform power limit during boot. If BIOS escapes Low Frequency Mode

(LFM) while under power cap, Intel® ME will retain processors in LFM mode.

After Intel® ME FW boots but before RAPL control would be available it will enforce the power limit by

using PROCHOT#.

Once RAPL is up, Intel® ME FW will use RAPL controls to apply configured power limit policies

9.2.6 Handling Intel® ME errors

System BIOS may encounter several erroneous situations signaled in Intel® ME firmware status

registers. The errors can be fatal for Intel® ME, but not necessary fatal for the server system. The way

BIOS handles the errors should depend on Intel® ME role in the system. If it is silicon enabling only

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 47

functionality is likely that the system will function quite well without Intel® ME. Therefore, it is

recommended to just log the Intel® ME error to system log and boot the system normally. If Intel® NM

is enabled in Intel® ME the error action depends on importance of Intel® ME services to system health.

E.g. if power limiting functionality is crucial to protect system power supply, or server farm power

supply it may be necessary to halt the system on Intel® ME error, or boot OS in LFM mode. To handle

such situations, it is recommended for BIOS to implement user configuration option in BIOS setup to

define Intel® ME error handling policy. The system administrator should be able to define whether the

server system should:

• halt on Intel® ME error, or

• boot in LFM mode, or

• boot normally.

The WCS Blade should boot normally in the presence of ME errors.

The following erroneous situation can be recognized in Intel® ME firmware status registers:

1. Fatal Intel® ME error If nonzero error code is reported in MEFS1.ErrorCode, Intel® ME firmware

is not running. This error should be traced in system log. The error action should depend on Intel®

ME role in the system design as described above. The corrective action may require rewriting all

Intel® ME region content using Security Strap Override jumper.

2. Intel® ME in recovery mode If MEFS1.CurrentState is 2, Intel® ME firmware is running in recovery

mode. It means that Intel® ME functionality is reduced to just versioning and firmware update.

There can be several reasons of the recovery mode. The reasons are listed in

MEFS2.RecoveryCause:

0. Intel® ME recovery jumper asserted

1. Security strap override jumper asserted

2. IPMI command

3. Invalid flash master access configuration

4. Intel® ME internal error

Cases 0..2 are caused by user actions and are not erroneous, but it is recommended to trace them to

the system log for informational purposes.

Case 3 is a flash descriptor configuration fault and requires update of flash descriptor region to fix it.

Case 4 may indicate Intel® ME firmware or hardware error and should be logged in the system log

and reported to Intel support. BIOS may consider performing Global Platform Reset (see 3.9) to

recover from this situation, but it should be traced to avoid repeating global reset in a loop if Intel®

ME error is persistent. Every boot with positive Intel® ME status should clear the trace of global reset

caused by Intel® ME error.

48 November 1, 2017

3. Intel® ME flash region errors

Several Intel® ME status bits may indicate errors in Intel® ME region on flash:

MEFS1.FPTorFactoryDefaultsBad

When this bit is set the current configuration may even work and Intel® ME can be operational but

reset to factory defaults is not possible and it should be fixed as soon as possible by writing the whole

Intel® ME region with valid Intel® ME region image. BIOS should trace this error in system log and

choose to boot system normally or handle Intel® ME recovery according to MEFS1.CurrentState.

MEFS1.RecoveryBUPLoadFault

When this bit is set the Intel® ME recovery firmware is broken in the Intel® ME region and it should

be fixed as soon as possible by writing the whole Intel® ME region with valid Intel® ME region image.

BIOS should trace this error in system log and may boot system normally if MEFS1.CurrentState says

that Intel® ME is operational.

MEFS2.MFSFailure

When this bit is set Intel® ME informs that Intel® ME File System failure has been detected during

recent Intel® ME boot. If possible this situation is automatically fixed by restoring factory defaults. It

means that user modifications to Intel® ME configuration are lost. This situation should be traced in

system log. Restore to factory defaults is not possible if also FPT or Factory Defaults Bad bit is set in

MEFS1 register. It is likely that Intel® ME will start in recovery mode if reset to factory defaults was

not possible. If reset to defaults was successful and Intel® ME started in normal, operational mode,

this bit will be cleared at next Intel® ME restart. The only corrective action needed is to restore user

configuration.

MEFS2.TargetImageBootFault

When this bit is set it says that the desired operational image could not start and either rollback

operational image is loaded if it is dual-image configuration, or Intel® ME runs in recovery mode.

Normal Intel® ME firmware update should be performed to recover from this situation.

9.2.7 Intel® ME firmware status registers

The Intel® ME firmware writes status information about its current state in two 32-bit registers in the

HECI-1 PCI configuration space: HFS at offset 40h, and GS_SHDW at offset 48h. BIOS should read these

registers to determine current state of the firmware. If the MEFS1.ErrorCode value is not zero, the

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 49

code should be made available to the BMC, so BMC can log the error as a part of the POST error logging.

This information is not available to BMC in any other way.

9.2.8 EOP indication requirement

System BIOS is a trusted platform component and its interaction with Intel® ME firmware does not

necessitate any strong security requirements. In order for Intel® ME firmware to determine when host

applications start running on the host system, BIOS is required to send an END_OF_POST message to

Intel® ME right before OS boot or OS resume. Upon receiving this message, Intel® ME imposes higher

security requirements on the host interfaces. The message must be sent every time when BIOS POST

is executed, i.e. on S5 resume and after G3. If it is sent Intel® ME silently drops it.

The EOP message is not to be sent if MEFS1.CurrentState indicates that Intel® ME firmware is disabled,

or MEFS1.ErrorCode indicates that Intel® ME is in error state. Intel® ME firmware is not running in this

case.

The END_OF_POST response message is sent by Intel® ME to BIOS in response to the END_OF_POST

message. BIOS should wait for the response to make sure Intel® ME received EOP notification. The

MEFS1.EOPStatus bit can also be observed to make sure Intel® ME accepted the END_OF_POST

request message.

If EOP response is not received and MEFS.EopStatus indicates that Intel® ME did not receive EOP, BIOS

POST should notify the BMC and log a System Event Log before taking error action appropriate for

Intel® ME role in the system. See BIOS requirements section above.

Note: BIOS must send END_OF_POST message prior to boot to EFI Shell as EFI Shell, like OS, allows

user to run applications

9.2.9 PCH thermal Management

Intel® SPS firmware offers monitoring PCH temperature using standard IPMI sensor defined in [ME

IPMI]. The IPMI sensor provides PCH temperature retrieved by Intel® ME from PCH using PCH Thermal

Sensor. Intel® SPS firmware does not require sending any MEI messaging related to the PCH Thermal

Management. It is only required to enable the sensor by setting bit Enable Thermal Sensor (ETS) in

Thermal Sensor Enable and Lock (TSEL) register at offset 8 in Thermal Reporting Registers region of PCI

device 31 function 6.

9.3 Baseboard Management Controller (BMC)

The baseboard is populated with an AST1250 Baseboard Management Controller (BMC). This

controller is independent to the host system software. This microprocessor has its own memory,

processor and IPMI compliant system firmware. The host system can be managed by the BMC when

the host system operating systems is off, or the system is soft powered down.

50 November 1, 2017

Architecture overview:

The AST1250

BUS No Device Slave Address

I2C1 AMI Decoder – MG9086 0xC0

I2C2 Baseboard FRU 0xA8

 Outlet Temp Sensor 0x9C

 Inlet Temp Sensor 0x9E

I2C3 FPGA Mezz card Temp Sensor 0x98

I2C4 ME_HOST_SMB

I2C5 ME_SMLINK0 0x2C

I2C6 10G Re-timer 0x30

I2C8 Hot-Swap Controller (HSC) 0x40

9.3.1 LPC Interface

The AST1250 supports a 33 MHz LPC bus interface. The LPC performs serial transfer of cycle type, address,
and data, synchronized with the 33 MHz PCI clock. The AST1250 supports 3 sets of KCS mode registers.
For IPMI, LPC provides hardware path for KCS interface.

9.3.2 UART Interface

AST1250 has 3 independent UART interfaces 2 fully compliant with the 16550 standard and separate

transmit and receive FIFO buffer (16x8). Chassis Manager serial commands will go through UART (TBD) of

the BMC. UART (TBD) is able to redirect system console and share the same debug console header on the

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 51

motherboard. UART (TBD) is dedicated to BMC debug. The baud rate for all UART communications is

115.2k.

9.3.3 GPIO Controller

The AST1250 supports up to 110 GPIO pins (14 sets). Each GPIO pin can be programmed to support 8mA

or 12mA driving strength.

9.3.4 I2C Interface

The AST1250 has 15 sets of multi-functional I2C/SMBus bus controllers. Each controller can be

programmed as a master or a slave controller. DMA command mode support transmitting/receiving 512

bytes at a time.

9.3.5 SPI Controller

BMC SPI Controller (SPI) implements 3 types of application mode: SPI Master, SPI Slave to AHB bus bridge

or SPI Pass-through.

9.3.6 Keyboard Controller Style (KCS) Interface

The KCS interface is one of the supported BMC to SMS interfaces. The KCS interface is specified solely for

SMS messages. SMM messages between the BMC and an SMI Handler will typically require a separate

interface, though the KCS interface is designed so that system software can detect if a transaction was

interrupted.

The KCS Interface is designed to support polled operation. Implementations can optionally provide an

interrupt driven from the OBF flag, but this must not prevent driver software from the using the interface

in a polled manner. This allows software to default to polled operation. It also allows software to use the

KCS interface in a polled mode until it determines the type of interrupt support. Refer to the IPMI 2.0

specification for further information.

9.3.7 IPMI Interface

9.3.7.1 Intelligent Platform Management Interface (IPMI)

The term Intelligent Platform Management refers to autonomous monitoring and recovery features

implemented directly in platform management hardware and firmware. The key characteristic of

Intelligent Platform Management is that inventory, monitoring, logging, and recovery control functions

are available independent of the main processors, BIOS, and operating system. Platform management

functions can also be made available when the system is in a powered down state

BIOS should be responsible for the initialization or startup of certain functions in the management

controller, such as setting the initial timestamp time in the SEL and/SDR devices. BIOS should also perform

tests of the platform management controller during POST. It is required that BIOS include provisions for

checking and reporting on the basic health of BMC by executing the Get Self-Test Results command and

checking the result.

52 November 1, 2017

It’s expected that BIOS features that take advantage of IPMI. For example, it is expected that the BIOS will

use IPMI to log POST errors, or to log ‘system boot’ events so that events can be tracked relative to the

last boot time. Another expectation the system will utilize the IPMI Watchdog Timer function with BIOS.

The BIOS should include support for serial port sharing; where by the BMC serial controller can be shared

between the BMC and BIOS to provide IPMI basic mode support and serial console redirection. There is

also a set of ‘boot flags’ that BIOS can must read to direct its operation following a system management

initiated reset, power cycle , or power up.

9.3.8 SMM

System Management Mode. A special mode of Intel IA -32 processors, entered via an SMI. SMI is the

highest priority non -maskable interrupt. The handler code for this interrupt is typically located in a

physical memory space that is only accessible while in SMM. This memory region is typically loaded with

SMI Handler code by the BIOS during POST.

9.3.9 SMI Handler

Certain platform management events come from baseboard interrupts. Such as correctable and

uncorrectable ECC errors, critical NMIs (Non-maskable Interrupts) such as PCI PERR (parity error), PCI

SERR (system error), bus timeout interrupts, hardware initialization failures, DIMM changes/failures,

POST errors, etc. The platform management hardware maps these ‘critical interrupts’ to the system SMI

(System Management Interrupt) signal. The SMI Handler runs, and, as part of handling these critical

interrupts, generates an Event Message to cause the event to get logged in the SEL. The SMI Handler can

also take autonomous, ‘emergency’ action, such as powering off or resetting the system, or propagating

an NMI to the operating system.

The SMI Handler is typically a routine that is loaded and initialized into a protected area of memory by

the BIOS.

SMI is the highest priority non-maskable interrupt in the system. When asserted, it switches the

processors into ‘System Management Mode’ (SMM). Upon entry into SMM, the processor state is saved,

and a memory configuration is entered where the SMI Handler has full access to system memory and I/O

space. This allows the SMI Handler to implement its management functions in an OS-independent

manner. The key aspect to this being that the SMI Handler code will run even if the OS is ‘hung’. This

makes it ideal for implementing certain critical and emergency management functions.

9.3.10 Critical Events and System Event Log Restrictions

The platform’s System Event Log should be at least 4KB. Therefore, it is important to refrain from filling

the System Event Log with non-critical ‘clutter’.

The System Event Log is primarily intended for capturing Critical Events. These include events that require

immediate logging to guarantee that they’re available for ‘post-mortem’ analysis, and events that may

require quick system responses, such as system power off, or shutdown.

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 53

Critical events include out-of-range temperature and voltage events, hardware failures such as power

supply or fan failures, interrupts and signals that affect system operation such as NMIs and PCI

PERR(parity error) and SERR (system error). Critical Events also include events that impact system data

integrity, such as the uncorrectable ECC errors, or system security, such as TPM presence change.

In addition to events that indicate ‘failure’ conditions, events that indicate impending failures are also

considered to be critical events. This includes events for reaching ‘warning levels’ for things such as system

temperature or error counts. The assertion of ‘Predictive Fault’ information is also considered critical,

particularly if the monitored device does not have a direct ‘failure’ indication.

Non-critical events, such as the return to an ‘OK’ state from a ‘Warning’ state should not be sent as critical

events. Non-critical system information is normally obtained by System Management Software polling

sensors and management controllers for their status.

SEL Mgr

PEF

PCI Mgmt BusIPMB InterfaceSystem Interface

BMC Internal
Events

Event
Receiver

SEL
Data

NV Storage

N
V

 S
to

ra
ge

 I/
F

B
IO

S
Ev

en
ts

IP
M

B
 E

ve
n

ts

SM
S

Ev
en

ts

P
C

I B
u

s
Ev

en
ts

Event Msg.
Buffer

The image above presents a conceptual illustration of the manner in which Event Message scan be

handled by a Baseboard Management Controller device that uses an external non-volatile storage device

to hold the System Event Log.

The figure shows a BMC with a shared system messaging interface where Event Messages can be

delivered from either BIOS, SMS (system management software / OS), or an SMI Handler, and an IPMB

interface and through which it can receive Event Messages from the Intelligent Platform Management

bus. The BMC can also generate ‘internal’ Event Messages.

When the BMC receives a message via the system or IPMB interfaces, a ‘Message Handler’ function

recognizes the message as being for the ‘Event’ functionality in the BMC and passes the message

information on to the ‘Event Receiver’ function. The Event Receiver function then takes the message

content and issues a request to a ‘SEL Mgr.’ function that formats the message as an SEL Entry and calls

the FLASH Interface to have the data stored.

54 November 1, 2017

The Event Receiver function is also responsible for driving the response message back through the

messaging system. This way, message acknowledgment or error reporting can be provided

Please refer to the Intelligent Platform Management Bus Communications Protocol Specification for

additional information on Event Message handling

9.3.11 Watchdog Timer

IPMI defines common command interfaces for configuring and accessing a watchdog timer function in

the BMC. This timer can be used as an aid in monitoring the health of BIOS and system software. The

watchdog timer can be used by different types of software such as BIOS, pre-boot, OS, and system

management software. Once started the timer must be periodically reloaded by software in order to keep

it from expiring. If software ceases to run, the timer will expire and generate a timeout act ion.

The IPMI definition allows different actions to be selected to occur on a watchdog timeout. This includes

reset, power off, power cycle, etc. and a ‘pre-timeout interrupt’ option that, if provided, can be used to

generate a system interrupt shortly before the timeout. The definition includes ‘timer use’ fields that keep

track of what type of software (BIOS, OS, System Management Software, etc.) started the timer. The

timeout action and ‘timer use’ information can be automatically logged to the SEL when the timeout

occurs. This provides a record of when the timeout occurred, what software was using the timer, and

what action was taken.

Watchdog Timer Actions

The following actions are available on expiration of the Watchdog Timer:

• System Reset

• System Power Off

• System Power Cycle

• Pre-timeout Interrupt(OPTIONAL)

The System Reset on timeout, System Power Off on timeout, and System Power Cycle on timeout action

selections are mutually exclusive. The watchdog timer is stopped whenever the system is powered-own.

A command must be sent to start the timer after the system powers up

9.3.12 Watchdog Timer Use Field and Expiration Flags

The watchdog timer provides a ‘timer use’ field that indicates the current use assigned to the watchdog

timer. The watchdog timer provides a corresponding set of ‘timer use expiration’ flags that are used to

track the type of timeout(s) that had occurred.

The timeout use expiration flags retain their state across system resets and power cycles, as long as the

BMC remains powered. The flags are normally cleared solely by the ‘Set Watchdog Timer’ command; with

the exception of the “don’t log” flag, which is cleared after every system hard reset or timer timeout.

The Timer Use fields indicate:

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 55

BIOS FRB2 timeout An FRB-2 (fault-resilient booting, level 2) timeout has occurred. This
indicates that the last system reset, or power cycle was due to the system
timeout during POST, presumed to be caused by a failure or hang related
to the bootstrap processor

BIOS POST timeout In this mode, the timeout occurred while the watchdog timer was being
used by the BIOS for some purpose other than FRB -2 or OS Load
Watchdog.

OS Load timeout The last reset or power cycle was caused by the timer being used to
‘watchdog’ the interval from ‘boot’ to OS up and running. This mode
requires system management software, or OS support. BIOS should clear
this flag if it starts this timer during POST.

SMS ‘OS Watchdog’
timeout

This indicates that the timer was being used by System Management
Software. During run-time, System Management Software (SMS) starts the
timer, then periodically resets it to keep it from expiring. This periodic
action serves as a ‘heartbeat’ that indicates that the OS (or at least the SMS
task) is still functioning. If SMS hangs, the timer expires, and the BMC
generates a system reset. When SMS enables the timer, it should make
sure the ‘SMS’ bit is set to indicate that the timer is being used in its ‘OS
Watchdog’ role

9.3.13 Using the Timer Use field and Expiration flags

The software that sets the Timer Use field is responsible for managing the associated Timer Use Expiration

flag. For example, the BIOS sets the BIOS FRB2 timeout, the BIOS is responsible for acting on clearing the

associated Timer Use Expiration flag.

9.3.14 BIOS Support for Watchdog Timer

If a system ‘Warm Reset’ occurs, the watchdog timer may still be running while BIOS executes POST.

Therefore, BIOS should take steps to stop or restart the watchdog timer early in POST. Otherwise, the

timer may expire later during POST or after the OS has booted.

9.3.15 Watchdog Timer Event Logging

By default, the BMC should automatically log the corresponding sensor-specific watchdog sensor event

when timer expiration occurs. After 10 consecutive watchdog resets events are logged without a

successful BIOS POST the BMC should temporarily suspend logging consecutive watchdog resets until

POST succeeds. This requires the watchdog to clear the consecutive system event log counter before

clearing the associated Timer Use Expiration flag. The purpose of suspending watchdog system event

logging after 10 consecutive events is to prevent the SEL from rolling and overwriting important error

messages that occurred before the initial watchdog event.

9.3.16 Console Redirection with Serial Port Sharing

BMC provides a serial port for BIOS to use as the console and debug port as the standard solution for

server design. The console redirection includes the functionality to have the serial output from Intel® C620

56 November 1, 2017

series chipset (PCH) to be redirected to BMC which in turn to be redirected to CM. For information on

serial port sharing functionality refer to the WCS-Software-BladeAPI specification.

9.3.17 BMC and BIOS communication

Due to AST1250 needing 3-5 seconds to decompress its firmware from flash memory and boot to

embedded OS when AC on, BIOS power on must wait about 60 seconds then send the first command to

BMC.

9.3.18 Dynamic BIOS Configuration

The Dynamic BIOS Configuration feature is a requirement to support all WCS flavors through one BIOS
image. Bios configuration i.e. Setup and Boot order settings are different across WCS flavor systems.
Dynamic BIOS configuration can be selected through BIOS setup or though the BMC/Chassis manager
Interface.

Refer to the WCS-Software-BladeAPI specification V2.9.5 or above for the Get/Set BIOS Config commands
details. WCS flavor configuration changes across different systems will be provided.

BIOS setup should display the current BIOS flavor, this is for status display and an option to select the new
BIOS flavor (may be called “Change BIOS flavor”). This setup options should be at the top of Boot option
selection page. The defined BIOS flavors are listed below, other flavors which are not listed here are not
supported.

 BIOS Setup menu IPMI OEM command BIOS Name or Project Version example

Dynamic BIOS
Configuration

WCS General

Azure

Azure PV1

Bing Online

Bing Offline

Exchange

0x00

0x01

0x11

0x02

0x12

0x03

C104n.BS.1A01.GN1

C104n.BS.1A01.AZ1

C104n.BS.1A01.AU1

C104n.BS.1A01.BA1

C104n.BS.1A01.BB1

C104n.BS.1A01.EA1

Below are BIOS requirements to support this feature.

1. BIOS flavor is updated though the BMC/Chassis manager Interface

During POST BIOS get the BIOS flavor from BMC using IPMI OEM command “Get BIOS Config” and

Byte 3 refer to chosen BIOS Configuration.

• If there is no change in the BIOS flavor request continue with system boot flow.
• If BIOS flavor change requested

o All related setup options (current setting and default setting) will be changed
based on the Flavor selection.

o The BIOS name or Project Version in the setup and SMBIOS data is updated based on
the BIOS flavor.

o Update the current BIOS flavor information in the setup.

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 57

o Set the Active BIOS Configuration filed in the BMC

o Do the system reset for the configuration to take effect.
2. BIOS flavor is updated though BIOS setup

o In addition to the steps listed above Update the Chosen BIOS configuration value
in the BMC using the Set BIOS config command after user saved the BIOS flavor
selection.

o Do the system reset for the configuration to take effect.
When user selects update setup default values “Change BIOS flavor” option should not be

updated.

In addition to the above requirements BIOS need to inform the available BIOS flavors to BMC using OEM

IPMI command. The format of available BIOS configurations are an array of 4-byte BIOS configuration

tuples, see description of this in the Get BIOS Config command response (Byte 4-255) in Blade API

specification.

9.3.19 Diagnose BMC

The first task for the BMC is BMC diagnosis. The BIOS has to validate whether the BMC is available. If BMC

is not available even after resetting and retrying, then BIOS sets a flag and does nothing to support the

BMC. Below is the flow chart and implementation:

The BIOS should read the BMC_READY_GPIO on the BMC to determine if the BMC is available. An error

retry timeout mechanism should be implemented for robustness. After the retry period times out and

the BMC is not available, the system should set the BMC not available flag and continue POST. If the BMC

READ GPIO pin is true then the BIOS should perform the Get Self Test Result and interpret the response.

Should the BMC fail the Self-Test the system should set the BMC not available flag and continue POST.

X

58 November 1, 2017

10 Networking

10.1 PXE boot

WCS Intel® Xeon® Scalable Platform BIOS must support PXE boot in legacy as well as UEFI boot

environments. For the legacy boot environment, this must be accomplished through CSM.

For UEFI boots, BIOS must implement following network stack as per UEFI 2.4 specification.

Network performance must be consistent in terms of network speed and PXE boot installation time

between legacy and UEFI boot environments. BIOS integrates the NIC driver as well as the EDK network

driver. No additional BIOS code is required to improve the speed.

10.2 MAC Address

MAC address is assigned at manufacturing and stored as a fixed value in the add-in NIC card.

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 59

10.3 ARC Naming

If a boot device is not listed in the boot order list, BIOS support under both legacy and UEFI boot should

still be available as usual as those already listed the boot order list. The BIOS code change can be copied

from previous WCS blades if this functionality is not already part the current AMI BIOS code base.

11 Security

The climate for platform attacks is ever increasing. As operating systems become successively

more hardened, attacks have been migrating into the platform firmware. It is important that one

must properly identify and secure various platform assets. Typical classification of various assets

of the Cloud UEFI System firmware are captured in the schematic below:

This chapter captures various security features that we must implement in a WCS BIOS in order

to successfully protect the Cloud platform. These include:

• TPM

• Secure Boot

• Signed BIOS Update

• Intel® TXT

60 November 1, 2017

11.1 Trusted Platform Module (TPM) Initialization

The BIOS must implement support for a Trusted Platform Module (TPM) 2.0 component according to the

TCG TPM Main and PC Client Specifications. In supporting the standard, the BIOS must implement all

requirements outlined in those specifications, such as storage and generation of encryption keys,

certificates, and platform attestation credentials.

11.1.1 Physical Presence

Certain TPM commands can be executed only if physical presence is asserted. For the WCS platform, Physical

presence is asserted through the BMC flag. The physical presence flag in the BMC is controlled through Get/Set

TPM Physical Presence IPMI commands documented in the WCS – Software blade API specification

version 3.8 or later.

TPM Administrator uses the Set TPM Physical Presence IPMI command before starting TPM admin

operations like clearing the TPM. WCS UEFI BIOS uses the Get TPM Physical Presence command to check

whether TPM physical presence is set before executing the TPM pending operations like clearing the TPM.

And BIOS need to clear the physical presence flag using the Set TPM Physical Presence IPMI command

after executing the TPM pending operations.

Other physical presence methods like user input during pre-boot should not be used as it requires local user

present.

11.1.2 PCR Measurement

BIOS is responsible for PCR measurements for various pre-boot components. TPM provides about 16 PCRs

for BIOS & OS usages. PCR usage is pre-defined by TCG specification. Following is a classification of PCR

measurement types.

• PCR Measurement Types

• PCR[0] – BIOS Code

• PCR[1] – BIOS Data

• PCR[2] – Option ROMs

• PCR[4] – OS Loader

• PCR[5] – GPT Partition

• PCR[8+] – PCRs for OS

PCR measurements of the pre-boot stack are schematically captured as below:

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 61

11.2 Secure Boot

11.2.1 UEFI Secure Boot Overview

UEFI Secure Boot defines how a platform’s firmware can authenticate a digitally signed UEFI image, such

as an operating system loader or a UEFI driver stored in an option ROM thus providing the capability to

ensure that those UEFI images are only loaded in an owner authorized fashion and providing a common

means to ensure platforms security and integrity over systems running UEFI-based firmware.

The BIOS should be UEFI 2.4 compliant and WHCK UEFI compliant. Typical schematic of the UEFI pre-boot

software stack with secure boot enabled is shown below:

62 November 1, 2017

11.2.2 UEFI Secure Boot’s Authenticated Variables

The UEFI Authenticated Variable Service is defined as an enhancement to the UEFI Variable Service. It

provides a means to ensure the integrity of specified variables by prepending authentication data. This is

done with an EFI_VARIABLE_AUTHENTICATION_2 descriptor as described in Section 7.2 of the UEFI

Specification 2.4.

UEFI Secure Boot’s image and certificate policies are controlled by the following UEFI authenticated

variables, which are defined in section 3.2 of UEFI Specification 2.4

- Platform Key (PK) - The platform key establishes a trust relationship between the platform owner

and the platform firmware. The platform owner enrolls the public half of the key (PKpub) into the

platform firmware. The platform owner can later use the private half of the key (PKpriv) to change

platform ownership or to enroll a Key Exchange Key. For UEFI 2.4, the recommended Platform

Key format is RSA-2048.

- Key Exchange Key (KEK) - The Key exchange keys establish a trust relationship between the

operating system and the platform firmware. The public part of the key (KEKpub) is enrolled into

the platform firmware. Each operating system (and potentially, each third party application which

need to communicate with platform firmware) can later use the private half of the key (KEKpriv)

to communication with firmware in trusted manner. For UEFI 2.4, the recommended Key

Exchange Key format is RSA-2048. The KEK can also contain authorized signing certificates.

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 63

- Authorized Signature Database (DB) - This database contains authorized signing certificates and

digital signatures. An image signed with a certificate enrolled in DB (or KEK) or whose digital

signature is enrolled in DB is authorized to execute. DB is the white list

- Forbidden Signature Database (DBX) - This database contains forbidden certificates and digital

signatures. An image signed with a certificate enrolled in DBX or whose digital signature is

enrolled in DBX, is never allowed to run. DBX is the black list.

- Setup Mode - When Setup Mode is null, no Platform Key is enrolled, and the platform is said to

be operating in setup mode. While in setup mode, the platform firmware does not authenticate

images and secure boot policy can be configured by writing the PK, KEK, DB and DBX variables.

When Setup Mode is not null, a Platform Key is enrolled, and the platform is operating in User

Mode. User Mode requires that all executable be authenticated before they are permitted to run

if they were loaded from locations (fixed disk, removable disk or option ROM) enabled by the

Secure Boot Policy PCD’s described below.

- SecureBoot – When set (1), the platform is operating in secure boot mode and performs image

verification based on the data stored in DB and DBX and the Secure Boot Policy PCD’s described

below.

11.2.3 Secure Boot Policy

OEM’s and IBV’s can customize their platform’s image verification policy by overriding the default policy

values value for each type of device (fixed media, removable media or option ROM).

The possible policies are:

• ALWAYS_EXECUTE:

- Always trust the executable. Allow it to run.

• NEVER_EXECUTE:

- Never trust the executable. Do not allow it to run.

• ALLOW_EXECUTE_ON_SECURITY_VIOLATION:

- Run images that are properly signed but whose signature is not found in the authorized

database or is found in forbidden database.

• DEFER_EXECUTE_ON_SECURITY_VIOLATION:

- Defer the running of images that are properly signed but whose signature is not found in

the authorized database or is found in the forbidden database and add a record in the

image execution information table as defined in the UEFI Specification.

• DENY_EXECUTE_ON_SECURITY_VIOLATION:

- Do not run images that are properly signed but whose signature is not found in the

authorized signature database or is found in the forbidden database and add a record in

the image execution information table.

• QUERY_USER_ON_SECURITY_VIOLATION:

- Query the user for a decision when an image is properly signed but its signature is not

found in the authorized database or is found in the forbidden database and add a record

in the image execution information table if user does not allow the image to run.

Currently we use UI pop-up window as the query method.

64 November 1, 2017

11.3 Signed BIOS Update

The Secure Flash Update and Recovery feature will be enabled. ODMs need to follow proper instruction
to build a Secure Flash Update enabled BIOS image, such as by removing default public keys and private
keys before starting to build the BIOS images (.BIN and .ROM). Make sure that all relevant BIOS
parameters tokens are appropriately set as required.
The built BIOS image (.ROM) will be sent to Microsoft for signing. Through a Microsoft CODESIGN server,
Microsoft will sign the BIOS image with a public key and private key pair. The signed BIOS image (.CAP)
will be sent back to the ODMs for validation. Following test cases for signed BIOS image validation should
be included.

 Signed BIOS
.CAP

Unsigned BIOS
.BIN

Tampered BIOS Signed
Recovery

Unsigned
Recovery

Signed BIOS
.CAP

PASS FAIL FAIL PASS FAIL

Unsigned BIOS
.BIN

PASS PASS N/A PASS PASS

To update a signed BIOS, Secure Flash Update enabled AMI utility (AFU) should be used. Final BIOS release
package will include .BIN (for ME update) and .CAP (for BIOS update). BIOS release notes should include
signed BIOS recovery steps.

11.4 Intel® Trusted Execution Technology (Intel® TXT) for

Servers BIOS Requirements

11.4.1 Summary of BIOS Initialization

The following is a list of BIOS requirements for supporting Intel® TXT for Servers:

- Intel® Virtualization Technology (Intel® VT) for Directed I/O (Intel® VT-d). BIOS must

implement “DMAR’ table as specified in the Intel® Virtualization Technology for Directed

I/O Architecture Specification 1.2.

• Implement the Firmware Interface Table (FIT). FIT to include the following records:

o Exactly One type 0 record (FIT header)

o One or more type 1 records (Microcode Update)

o One type 2 record (BIOS AC Module)

o One or more type 7 records (BIOS Startup Module Entry)

o Zero or one type 8 record (TPM Policy Record)

o Zero or one Type 9 record (BIOS Public Policy Record)

o Zero or one Type 10 record (Intel® TXT Configuration Policy Record)

• Initialize the Trusted Platform Module (TPM) according to the TCG TPM PC Client specifications,

except TPM_STARTUP.

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 65

• Provide hooks to call the BIOS AC module depending on the current state of the platform.

• Initialize Intel® TXT processor registers.

• Allocate Intel® TXT device memory.

• Initialize Intel® TXT chipset registers.

• Lock memory and SMRAM configuration before exiting Init BIOS code.

• Meet BIOS update requirements to prevent no-boot conditions. See Section 6.7.5.

• Provide a BIOS-based SINIT ACM and copy the SINIT ACM into memory as specified in the Intel®

Trusted Execution Technology (Intel® TXT) Software Development Guide.

11.5 Security Code Review

Security code reviews are a critical part of firmware development life cycle. The source code for with WCS

UEFI BIOS shall be subjected to security code reviews by security experts within Microsoft. Issues found

during code review to be fixed on a priority basis and the priority will be determined by Microsoft team.

To make the security code review efficient, the UEFI BIOS source must be constructed using latest versions

of AMI Core and Technology modules, latest version of Intel reference code, Microcode and ME firmware.

AMI CRB BIOS version is used for WCS BIOS shall be employed to track all the BIOS components version

details.

All the UEFI security vulnerabilities found by third parties and applicable fixes by AMI should be included

in to the Mt. Olympus source.

BIOS need to be tested with CHIPSEC tool.

11.6 BIOS firmware Volume Checksum SEL log

BIOS has to check for Firmware volume (FV) corruption and do the BMC SEL entry only if the FV is

corrupted. In a normal boot where FV is not corrupted we should not see any FV checksum SEL log. FV

corruption can be detected by checking the integrity of FV header and FFS files in FV.

For the format of the FV corruption SEL entry refer to the System event logs section.

FV Main corruption SEL entry should be done before executing any module from FV main. Boot block FV
corruption SEL entry needs to be done as soon as the IPMI stack is available in PEI. It is accepted that Boot
block FV is corruption can be detected only after part of the modules executed in boot block FV.

66 November 1, 2017

12 Error Handling

12.1 Platform Error Handling

Error handling relates to host of RAS features that are implemented on WCS Intel® Xeon® Scalable

Platform platform. These include both error correction as well as logging. The latter, i.e. error logging, is

particularly useful in planning for maintenance actions. On the other hand, error correction helps in

restoring functionality of an otherwise failing node. So, the error handling operations can be classified as

–

• Error Correction

• Error Logging

• Reporting status

12.1.1 Error Sources and Types

One of the major requirements of server management is to correctly and consistently handle system
errors. System errors that can be enabled and disabled individually or as a group can be categorized as
follows:

• Processor Bus Error

• Memory ECC Error

• Ultra Path Interconnect (UPI) Error Events

• PCI Express* Errors

• Power On Self Test (POST) Error

• Power Error

• Software NMI Events

• MEMHOT# and PROCHOT#

• Machine Check Error

• Other IIO Error

The errors can be further categorized based on severity as –

• Correctable Errors (CE)

• Uncorrectable Errors (UCE)
o Non-Fatal
o Fatal

The BMC is capable of receiving errors from sensors and error signals. However, it is the responsibility of
the BIOS to inform the BMC of system errors that BIOS has received. The BIOS should provide a mechanism
for grouping errors, suppressing errors and setting error thresholds where applicable. When informing
the BMC of errors, the BIOS is responsible for complying with the IPMI messaging format for System Event
Log as specified in “WCS Software Blade API Specification”.

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 67

12.2 Summary of BIOS Platform Error Handling

The following table presents high level requirements for handling of platform errors by the BIOS during

runtime.

Component Type Policy SMM OS

Memory CE Policy to log based on
threshold and leaky
bucket

• Log IPMI record to BMC

• Create WHEA record

Poll for WHEA
record

Memory UCE • Log IPMI record to BMC

• Create WHEA record

• Generate NMI

BSD using
WHEA record
and ERST

UPI CE • Log IPMI record to BMC

• Create WHEA record

Poll for WHEA
record

UPI UCE Genrates CATERR
BMC logs SEL record

• None

PCIe/IIO CE Policy to halt log based on
threshold

• Log IPMI record to BMC

• Create WHEA record

Poll for WHEA
record

PCIe/IIO UCE
Non-
Fatal

 • Log IPMI record to BMC

• Create WHEA record

• Generate NMI

BSD using
WHEA record
and ERST

PCIe/IIO UCE
Fatal

 • Log IPMI record to BMC

• Create WHEA record

• Generate NMI

BSD using
WHEA record
and ERST

12.3 Memory Error Handling

BIOS must implement two forms of Memory Error Handling, i.e. boot time as well as runtime. During boot

time, BIOS should detect and isolate faulty DIMMs. During runtime, BIOS should first attempt to correct

the errors, if feasible. If the errors are uncorrectable, BIOS must isolate enact user define policy, as

specified in this section.

12.3.1 Independent Channel Mode

In non-ECC and x4 SDDC configurations, each channel is running independently (non-lockstep), that is,

each cache-line from memory is provided by a channel. To deliver the 64-byte cache-line of data, each

channel is bursting eight 8-byte chunks. Back to back data transfer in the same direction and within the

same rank can be sent back-to-back without any dead-cycle. The independent channel mode is the

recommended method to deliver most efficient power and bandwidth as long as the x8 SDDC is not

required.

68 November 1, 2017

12.3.2 System BIOS Responsibility

This section provides a general overview of the System BIOS responsibilities for handling ECC

implementations. There are four general items defined as:

• Initialize Hardware—During POST (Power On Self Test) the BIOS needs to detect the presence of

ECC and Parity memory installed in the system. This information also needs to be stored in some

form of NV RAM. The BIOS should also initialize all DRAM memory used in the system once ECC is

enabled in the chipset with the error generation turned off.

• Report Errors—The BIOS needs to report errors back to the user. In situations where DMI BIOS

Event Logging support is present, the event log must be updated with the error. Refer to the “DMI

BIOS Support: Interface Requirements Revision 2.1” document for details on this interface. In

situations where DMI BIOS Event Logging support is not present, the BIOS has to implement BMC

SEL log per IPMI spec to leverage the BMC capabilities.

• Setup/Configuration Interface—The BIOS should provide a setup interface to allow the user to

enable/disable ECC or parity checking in the system. In situations where DMI BIOS Event Logging

support is present, setup should also provide a switch for enabling/disabling the logging of these

type of events.

• Correction of Errors—Single-bit ECC errors are correctable. This is due to the fact that the specific

data bit that has the error can be identified and corrected before the data is passed back to the

requesting mechanism. The BIOS advanced menu should have a settable option for setting the

single bit ECC error threshold and sliding time window. The BIOS is responsible for logging single

bit errors in the System Event Log when the error count exceeds the threshold within the given

time window. This is optimal because it allows the user to keep on working and in the best case

being notified that there was an error. This allows the user to take whatever measures are

necessary to correct the situation later. This may include replacing a bad DIMM in the case of

hardware errors or simply having the memory in question “scrubbed” for noise-related errors.

“Scrubbing” involves reading a memory location and then writing the value and error bits back to DRAM.

If there was a noise-related error it will be corrected. Otherwise, the incorrect checking information will

always show up as an error and look like a hardware-related error if that specific memory location is not

ever written out.

12.3.3 Faulty DIMMs

The BIOS provides detection of a faulty or failing DIMM. A DIMM is considered faulty if it fails the memory

test. A faulty DIMM should not halt POST. When initializing memory, the BIOS should detect any failed

DIMM. If the failure can be isolated to a rank the rank should be disabled, otherwise the entire channel

must be disabled. The error event should be logged in the System Event Log and boot sequence should

continue.

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 69

12.3.4 Correctable Errors

For each correctable error that occurs when the log threshold is reached, the BIOS will log a “Correctable

Error” SEL entry. No other actions will be taken, and the system will continue to function normally

12.3.5 Uncorrectable Errors

Uncorrectable Errors after POST should also be logged to the SEL and generate an NMI as described below.

12.4 NMI Generation

The BIOS shall generate NMIs to halt the system progress when uncorrectable errors occur at runtime.

Uncorrectable errors will be recorded in machine check. The handling of MCE must be appropriately

implemented along with the NMI handing using modules in Intel Reference Code.

Should it be deemed necessary to mask any NMI events, the BIOS porting guide must be provided in

writing to Microsoft with a list of NMI events which are believed necessary to be masked.

12.5 Enhanced Machine Check Architecture (EMCA)

Enhanced Machine Check Architecture (EMCA) Generation 2, or Enhanced Error Logging, enables the SMI

handler to provide a detailed error log to the OS when MCA events occur. The log complements the

machine check bank information and is expected to assist OS with better error isolation and predictive

failure analysis. For example, BIOS should provide detailed information about the location of a failed

DIMM in case of a memory error. BIOS must have a platform policy defined in order to enable/disable the

feature through BIOS Setup. The default policy for this feature should be set as disabled.

12.5.1 Capability Detection

BIOS detects the processor’s Enhanced Error Logging capability by reading IA32_MCG_CAP (MSR 179h).

Bit 26 indicates support for Enhanced Error Logging and the EXTENED_MCG_PTR MSR at address 793h.

Note that SMM_MCA_CAP is only accessible when in SMM. Attempts to access this register from code

running outside of SMM will result in a #GP fault.

12.5.2 EMCA Generation 2

EMCA Gen 2 is a RAS feature that redirects Machine Check Exceptions (MCE) and Corrected Machine

Check Interrupts (CMCI) to firmware first (via SMI) before sending it to the OS handler. Enhanced MCA

enables BIOS-based recovery from errors.

With EMCA Gen 2 enabled, BIOS is able to configure each machine check bank to assert SMI instead of

MCE and CMCI. The BIOS SMI handler is allowed to correct the error if possible before, optionally, causing

an MCE or CMCI to be signaled once the SMI handler exits.

70 November 1, 2017

The BIOS is expected to implement Enhanced Machine Check Architecture (EMCA) Generation 1 and

Generation 2. The BIOS detects the processor’s EMCA Gen 2 capability by reading IA32_MCG_CAP (MSR

179h). Bit 25 of that register indicates support for Enhanced MCA. To determine which specific MCA banks

support EMCA Gen 2, BIOS must read SMM_MCA_CAP[BANK_SUPPORT] (MSR 17Dh).

The BIOS should support SMI Generation for the redirection of correctable errors and uncorrectable to

SMI for a specific MCA bank. The SMM handler may choose to handle a MCA error or it may simply log

the error and propagate the MCA event to the OS. Refer the Intel® Xeon® Scalable Platform BIOS writers

guide for implementation of the SMM EMCA Handler.

12.6 Error Injection

For all categories of errors, BIOS must support error injections using tools supplied by Intel RAS Tool, ITP
based scripts provided by Intel and other error injection means for PCI / M.2 add-on devices.

12.7 WHEA Support

12.7.1 ACPI Platform Error Interface

For the purposes of OS level platform error handling, BIOS must have complete support for Microsoft

“Windows Hardware Error Architecture”(WHEA). According to ACPI Spec 5.0, “ACPI Platform Error

Interfaces” (APEI) incorporates the Microsoft WHEA as an ACPI standard feature. The BIOS must

publish WHEA-specific ACPI tables that describe the platform error interfaces for the OS. BIOS must

also implement the ASL code to support and enable WHEA capability in the platform.

The BIOS must provide the following ACPI tables:

• Hardware Error Source Table (HEST) :

o Extracts error information from platform hardware error registers.

• Error Injection (EINJ) Table :

o Details the mechanism to inject a simulated HW Error to test WHEA error flow.

• Error Record Serialization Table (ERST) :

o Persistent store of the WHEA Error Record to describe the serialization interface of

the platform to the OS.

• Boot Error Record table (BERT) :

o Captures fatal errors from the last boot that the BIOS or OS were unable to process.

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 71

12.8 Error Logging

12.8.1 Runtime Error Logging via SMI Handler

The SMI handler is used to handle and log system level events that are not visible to the server
management firmware. The SMI handler must pre-process all system errors, including those that are
normally considered to generate an NMI. Sensors are managed by the BMC. The BMC is capable of
receiving event messages from individual sensors and logging system events. For more information on
BMC logged errors, see the BMC Specification.

12.8.2 System Event Log

The BMC provides a mechanism for logging events in the IPMI standard System Event Log format.
Reference the WCS-Software-BladeAPI specification for further details.

12.8.3 Logging Format Conventions

The BIOS complies with the logging format defined in the IPMI specification. IPMI requires the use of all
but two bytes in each event log entry, called Event Data 2 and Event Data 3. An event generator can specify
that these bytes contain OEM-specified values. The system BIOS uses these two bytes to record additional
information about the error. Event Data 2 and 3 are undefined for all other events that are logged by the
BIOS.

The system BIOS sensors are logical entities that generate events. The BIOS ensures that each combination
of sensor type (such as memory) and event type (sensor-specific) has a unique sensor number.

12.8.4 Memory Error Logging and Reporting

12.8.4.1 Memory Error Reporting during BIOS POST

Memory errors are reported through MRC debug, System Event Logging and SMBIOS event logging. The

following table shows the association of DIMM slots with SEL logging numbers:

DIMM Number in SEL Mt. Olympus DIMM slot

1 A1

2 A2

3 B1

4 B2

5 C1

6 C2

7 D1

8 D2

9 E1

10 E2

11 F1

12 F2

13 G1

14 G2

72 November 1, 2017

15 H1

16 H2

17 J1

18 J2

19 K1

20 K2

21 L1

22 L2

23 M1

24 M2

 Memory Error Reporting Agent Summary

Platform Element Description

System Event Log When a memory error occurs at runtime, the BIOS will log the error into the
BMC System Event Log

12.8.4.2 Runtime Errors

The BIOS is responsible for logging single bit and multi bit ECC errors in the System Event Log. For multi
bit ECC errors the BIOS should scan the machine check register on boot. Single bit errors should be logged
when the single bit error count exceeds the threshold within the threshold time window.

The hardware is programmed to generate an SMI on correctable data errors in the memory array. The
SMI handler records the error and the DIMM location to the system event log. Uncorrectable errors in the
memory array are mapped to the SMI because the BMC cannot determine the location of the bad DIMM.
The uncorrectable errors may have corrupted the contents of SMRAM. The SMI handler must log the
failing DIMM number to the BMC if the SMRAM contents are still valid. The ability to isolate the failure
down to a single DIMM may not be available on certain errors, and / or during early POST. Refer to the
WCS-Software-BladeAPI specification for the event log entry format.

12.8.5 Ultra Path Interconnect (UPI) Error Events Logging Format Convention

Refer to the WCS-Software-BladeAPI specification for the event log entry format.

12.8.6 PCI Express* Errors Logging Error Format Convention

The hardware is programmed to generate an SMI on PCIe correctable, uncorrectable (non-fatal) and
uncorrectable fatal errors. The correctable PCIe errors are reported to the BMC as PCIe Bus Correctable
errors. PCIe non-fatal and fatal errors are reported to the BMC as PCIe Bus Uncorrectable errors. The
system event log for these errors includes the location of the device reporting an error which includes the

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 73

PCIe link number, PCI bus number, PCI device number, and the PCI function number. An NMI is generated
for PCIe Uncorrectable errors after they are logged. Refer to the WCS-Software-BladeAPI specification for
the event log entry format.

Add PCie Error handling and masking if required. PCIe error masking should be used sparingly. Microsoft
has to approve all masked PCIe errors. The ODM must seek written approval from Microsoft on the
masking of any PCIe NMI events.

12.8.7 Handling of PCIe Correctable error logging Limit

When PCIe correctable errors reach the threshold limit BIOS should log the BMC SEL event as per the

format described in Table 1 PCIe Error Event Log 1.

Event Data 1 filed has updated with 0xC = Correctable error logging Limit Reached.

74 November 1, 2017

13 Firmware Update

13.1 BIOS Update Utility

The flash ROM contains system initialization routines. The complete ROM is visible; starting at physical
address 4 GB minus the size of the flash ROM device. A 16-KB parameter block in the flash ROM is
dedicated to storing configuration data that controls the system configuration (ESCD). Application
software must use standard APIs to access these areas; application software cannot access the data
directly

BIOS update utility or utilities should support the following environments: MS DOS, UEFI Shell, Windows-
Server 2012, and WinPE 4.0. The utilities load a fresh copy of the BIOS into the flash ROM. The BIOS update
may affect the following items:

• The system BIOS, including the recovery code, setup utility and strings.

• Onboard devices and other option ROMS for the devices embedded on the server board.

• Memory reference code.

• Microcode update

13.2 Signed BIOS Updates

Provision should be available to facilitate signing of the BIOS images. For the WCS platforms, the BIOS
signing will be done by Microsoft.

13.3 BIOS Recovery

BIOS must support mechanism to perform recovery operation via USB Mass Storage device.

13.4 Back-up Partition

Intel® Xeon® Scalable Platform will have a redundant flash part. In case of BIOS image corruptions, BIOS
should have support for performing recovery from a backup partition.

The current implementation by Intel® Customer Reference Board Crescent City will be leveraged into Mt.
Olympus design. BMC will have GPIO pins that control the chip select signal, SPI muxing between PCH and
BMC as well as ME_BIOS_SWAP.

13.5 One BIOS Image Considerations

For the WCS Intel® Xeon® Scalable Platform generation, one BIOS image must be supported, irrespective

of the OEM or ODM. In addition, all platform flavors must be consolidated into one SKU.

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 75

Platform flavors mainly differ in setup defaults. Thus, appropriate setup defaults must be loaded during

the boot based on the flavor for which the platform is provisioned. The platform flavor can be obtained

via a BMC OEM command, see the chapter of BMC in section “Dynamic BIOS Configuration” for details.

In addition, some of the BIOS modules may be different with platform flavor. For such deviations, BIOS

should have provision to load flavor specific drivers or launch flavor specific pre-boot functionality.

13.6 SEL Record

On each BIOS attempt, BIOS must log SEL record indicating that firmware update is attempted.

76 November 1, 2017

14 OS Boot Support

14.1 Software Design Specification: UEFI Operating System

Support

• Windows Server 2012 or later

• WinPE 4.0 or later

14.2 Software Design Specification: Legacy Operating System

Support

• Windows Server 2012 or later

• WinPE 4.0

14.3 Bootable Device types

BIOS must support OS boots from following types of devices / media:

• Network boot (PXE)

• USB media

• Disk devices
o M.2 AHCI
o M.2 NVMe
o SATA
o SAS

• EFI shell

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 77

15 BIOS POST Codes

This section presents list of postcodes that BIOS must implemented for the WCS Intel® Xeon® Scalable
Platform.

There are two parts of the postcodes. First, WCS will acquired the latest version of AMI postcodes from
the current AMI BIOS base code. Second, the postcodes from Intel RC will also be includes as part of the
WCS requirements.

In addition to the BIOS Post Codes, a jumper will be used to turn on or turn off the serial debug output on
the fly. The jumper is wired to a PCH GPIO pin as defined in the PCH GPIO pins list. The BIOS code has the
support to detect the GPIO pin on the fly during boot when a status with message is coded for the current
debug level.

78 November 1, 2017

16 Field Replaceable Unit (FRU)

The Field Replaceable Unit (FRU) information is used to primarily to provide inventory information. The
system FRU storage format and configuration should comply with the Intel® “Platform Management FRU
Information Storage Definition v1.0” specification revision 1.2.

The FRU information is stored by BMC in its in non-volatile memory. BIOS needs to query BMC to acquire
the FRU data and display under BIOS setup accordingly.

The FRU should contain the following areas:

• Common Header

• Internal Use Area (Optional)

• Chassis Info Area

• Board Info Area

• Product Info Area

• Multi Record Area (128 bytes)

FRU Sample Layout:

Internal Use Area

--

Internal use data = ""

--

Chassis Info Area

--

 Chassis Type = "17h"

 Chassis Part Number = "X873021-001"

 Chassis Serial Number = "Auto Generated" 12 bytes auto generated.

 Chassis Custom field 1 = "2.0"

 Chassis Custom field 2 = Supplied by Microsoft

--

Board Info Area

--

 M/B Language Code = "19h"

 M/B Manufacturer Date/Time = Generated by MFG

 M/B Manufacturer Name = "Microsoft"

 M/B Product Name = Supplied by Microsoft

 M/B Serial Number = Generated by MFG

 M/B Part Number = Supplied by Microsoft

 M/B Fru File ID = "01"

--

Product Info Area

--

 PD Language Code = "19h"

 PD Manufacturer Name = "Microsoft"

 PD Product Name = Supplied by Microsoft

 PD Part/Model Number = Supplied by Microsoft

 PD Version = "1.0"

 PD Serial Number = Generated by MFG,same as board area above

 PD Asset Tag = Microsoft Supplied, 10 bytes required.

 PD Fru File ID = "01"

 PD Custom field 1 = Supplied by Microsoft

 PD Custom field 2 = Supplied by Microsoft

 PD Custom field 3 = Supplied by Microsoft

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 79

--

Multi Record Area

--

Filled by Microsoft, 128 bytes anticipated.

80 November 1, 2017

17 System Event Logs

WCS blade should support all standard IPMI 2.0 and DCMI system event logs. In addition, the system event

logs defined in the following sections should be supported.

The following table shows the OEM record type and sensor type numbers that are reserved for the BIOS

and BMC. Also see the WCS-Software-Blade-API specification for details on the SELs for BMC as well as

ME.

Table 2. OEM Record Types Reserved for Use by BIOS and BMC

OEM Record Types Owner

0xC0 – 0xCF BIOS

0xD0 – 0xDF BMC

Table 3. OEM Sensor Types Reserved for Use by BIOS and BMC

OEM Sensor Types Owner

0xC0 – 0xCF, 0xD2 BIOS

0xD0 – 0xD1, 0xD3 - 0xDF BMC

17.1 System Event Logs Generated by BIOS

This section describes the System Event Logs that are generated by the BIOS.

17.1.1 QuickPath Interconnect (QPI) Error Logging

The BMC logs QPI errors using the following SEL format.

Table 4 QPI Error Event Log

Byte Field Description

1:2 Record ID SEL Record Id.

3 Record Type System Event Record: 0x02

4:7 Timestamp Timestamp

8:9
Generator
Id

Byte 1 = 0x01 (Generated by BIOS)
Byte 2 = 0x00

10 Evm Rev 0x04

11 Sensor Type 0x07

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 81

12 Sensor # 0x9D

13
Event Dir |
Event Type

[7] Assertion: 0

[6:0] Event Trigger: 0x6F

14 Event Data 1

[7:6] ‘b10 = OEM code in byte 2
[5:4] ‘b10 = OEM code in byte 3
[3:0] Offset from Event/Reading Code for discrete event status
0xB - Uncorrectable Error

0xC - Correctable Error

15 Event Data 2

QPI Error Code:

0x32 - Tx CRC Error (initiates LLR_Req sequence)

0x31 - Rx CRC Error with LLR Success (no phy reset)

0x30 - Rx CRC Error with LLR Success after phy reset

0x22 - Phy In-band Reset & no width change21h - Not supported

0x20 - Phy Initialization Abort

0x1F - Unsupported Config Request from Message Channel

0x15 - Link Layer RBT Error

0x14 - Link Layer L0p Retrain error

0x13 - Link Layer Control Error

0x12 - Unsupported/Undefined Packet

0x11 - Tx Unsuccessful Link Layer Retry

0x10 - R3QPI Control Error

0x03 - latency buffer over/under run

0x02 - Drift Buffer overrun

0x00 - phy control error

16 Event Data 3

Bit 7:5 Reserved
Bit 4 QPI Link
‘b0 = QPI 0
‘b1 = QPI 1
Bit 3:0 Bitmap for processor number
Bit0 = 1st processor
Bit1 = 2nd processor
Bit2 = 3rd processor

Bit3 = 4th processor

17.1.2 Memory ECC Error Logging

The BIOS logs memory ECC errors using the following SEL format. Refer to the WCS-Software-Blade-BIOS
specification for details on the error logging.

The “Last Boot Error” value in Event Data 2 indicates fatal errors that caused the system to freeze or reset

without triggering SMI, thus preventing the BIOS from handling the error. At the subsequent reboot, the

82 November 1, 2017

“sticky” MCA and the “sticky” global Fatal Error Status CSR’s remain valid so BIOS can generate the BMC

SEL entry along with the POST error code and WHEA BERT.

Table 5 Memory ECC Error Event Log

Byte Field Description

1:2 Record ID SEL Record Id.

3 Record Type System Event Record: 0x02

4:7 Timestamp Timestamp

8:9 Generator Id
Byte 1 = 0x01 (Generated by BIOS)

Byte 2 = 0x00

10 Evm Rev 0x04

11 Sensor Type 0x0C

12 Sensor # 0x87

13
Event Dir |
Event Type

[7] Assertion: 0
[6:0] Event Trigger: 0x6F

14 Event Data 1

[7:6] ‘b10 = OEM code in byte 2
[5:4] ‘b10 = OEM code in byte 3
[3:0] Offset from Event/Reading Code for discrete event status
0x0 = Correctable Error
0x1 = Uncorrectable Error
0x5 = Correctable ECC error logging Limit Reached

15 Event Data 2

0x00 = Single Bit Error warning threshold (Event/Reading Type Code = 0h for
Correctable Error) if supported.

0x01 = Single Bit Error critical threshold (Event/Reading Type Code = 5h for
Correctable ECC error logging limit reached) if supported.

0x10 = Last Boot Error

0xFF = unspecified

Other values are reserved

16 Event Data 3 DIMM Number (1-base)

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 83

17.1.3 PCI Express Error Logging

The BIOS logs PCIe errors using the following SEL format. The log entries should be added to the SEL in the
order shown here. There can be one or more PCIe Error Event Log 2 entries depending on the number of
errors that occurred.

Refer to the WCS-Software-Blade-BIOS specification for details on the error logging.

The “Last Boot Error” value in Event Data 2 indicates fatal errors that caused the system to freeze or reset

without triggering SMI, thus preventing the BIOS from handling the error. At the subsequent reboot, the

“sticky” MCA and the “sticky” global Fatal Error Status CSR’s remain valid so BIOS can generate the BMC

SEL entry along with the POST error code and WHEA BERT.

Table 6 PCIe Error Event Log 1

Byte Field Description

1:2 Record ID SEL Record Id.

3 Record Type System Event Record: 0x02

4:7 Timestamp Timestamp

8:9 Generator Id
Byte 1 = 0x01 (Generated by BIOS)

Byte 2 = 0x00

10 Evm Rev 0x04

11 Sensor Type 0x13 (Critical Interrupt)

12 Sensor # 0xA1

13
Event Dir |
Event Type

[7] Assertion: 0
[6:0] Event Trigger: 0x6F

14 Event Data 1

[7:6] ‘b10 = OEM code in byte 2
[5:4] ‘b10 = OEM code in byte 3
[3:0] Offset from Event/Reading Code for discrete event status
0x4 = PCI PERR
0x5 = PCI SERR
0x7 = Bus Correctable Error
0x8 = Bus Uncorrectable Error
0xA = Bus Fatal Error
0xC = Correctable error logging Limit Reached
0xF = Last Boot PCIe Error

15 Event Data 2
Bit [7:3] Device Number

Bit [2:0] Function Number

16 Event Data 3 Bit [7:0] Bus Number

Table 7 PCIe Error Event Log 2

84 November 1, 2017

Byte Field Description

1:2 Record ID SEL Record Id.

3 Record Type OEM System Event Record: 0xC0 (PCIe Error)

4:7 Timestamp Timestamp

8:10
Manufacturer
Id

IANA Enterprise ID. See Device ID command for details.

11:12 Vendor ID Vendor ID of error source device

13:14 Device ID Device ID of error source device

15 OEM Data 1 1st Error ID (see following table for details)

16 OEM Data 2

For errors on M.2 devices, this field contains the following:
[7:5] – [0000]
[4:0] –logical M.2 on motherboard

For other devices, this field contains the 2nd Error ID (see following table for
details)

Table 8 PCIe Error Event Log 2 Error ID Detail

ID Error Default
Error
Severity

Transaction Response Default Error
Logging

70 Receiver Error 0 Respond per PCI Express specification CORERRSTS

71 Bad TLP 0 Respond per PCI Express specification CORERRSTS

72 Bad DLLP 0 Respond per PCI Express specification CORERRSTS

73 Replay Time-out 0 Respond per PCI Express specification CORERRSTS

74 Replay Number Rollover 0 Respond per PCI Express specification CORERRSTS

75 Received ERR_COR message
from downstream device

0 Respond per PCI Express specification RPERRSTS

76 PCI Express Link Bandwidth
changed

0 No Response -- This error is not associated
with a cycle. I/O module detects and logs
the error. Log per "Link bandwidth change
notification mechanism" ECN

XPCORERRSTS

78 Advisory Non-Fatal Error 0 Respond per PCI Express specification CORERRSTS

80 Received "Unsupported
Request" completion status
from downstream device

1 Coherency interface to PCI Express read:
I/O module returns all 1s' and normal
response to the coherent interface to
indicate master abort Coherency interface
to PCI Express NP write: I/O module returns
normal response PCI Express to PCI Express

XPUNCERRSTS

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 85

read/NP-write: 'Unsupported request' is
returned2 to original PCI Express requester.

81 Sent a PCI Express
"Unsupported Request"
response, on inbound
request for address decode,
request type, or other reason

1 PCI Express read: "Unsupported request"
completion is returned on PCI Express PCI
Express non-posted write: 'Unsupported
request' completion is returned on PCI
Express. The write data is dropped PCI
Express posted write: I/O module drops the
write data. Header is logged where
possible.

XPUNCERRSTS
HDRLOG

82 Received "Completer Abort"
completion status from
downstream device

1 Coherency interface to PCI Express read:
I/O module returns all '1s' and normal
response to the coherency interface
Coherency interface to PCI Express NP
write: I/O module returns normal response
PCI Express to PCI Express read/NP-write:
Completer Abort’ is returned 3 to original
PCI Express requester.

XPUNCERRSTS

83 Sent a PCI Express
"Completer Abort" condition
on inbound request for
address decode, request
type, or other reason

1 PCI Express read: 'Completer Abort'
completion is returned on PCI Express PCI
Express non-posted write: 'Completer
Abort' completion is returned on PCI
Express. The write data is dropped PCI
Express posted write: I/O module drops the
write data. Header is logged where
possible.

XPUNCERRSTS
HDRLOG

84 Completion timeout on NP
transactions outstanding on
PCI Express/DMI

1 Coherency interface to PCI Express read:
I/O module returns normal response to the
coherency interface and all 1’s for read data
Coherency interface to PCI Express
nonposted write: I/O module returns
normal response to the coherency interface
PCI Express to PCI Express read/nonposted
write: UR2 is returned on PCI Express
Header is logged where possible.

UNCERRSTS
HDRLOG

85 Received PCI Express
Poisoned TLP

1 Outbound-Read Completion or Inbound
Write: the packet is sent to the coherent
interface. If POISFEN bit is set, the poison
packet is set to its destination with poison
bit set. If POISFEN is cleared, the packet is
dropped. Peer to Peer read completion or
write request: I/O module forwards packet
with poisoned data to the destination port
normally, but with the poison bit set. If
POISFEN bit is set and the poison TLP
severity is set as non-fatal, then this error is
logged as an Advisory Non-fatal. Also,
received poisoned TLPs that are not
forwarded over the coherency interface are
always treated as an Advisory Nonfatal

UNCERRSTS
HDRLOG

86 November 1, 2017

error, if severity is set to non-fatal. Header
is logged where possible.

86 Received PCI Express
Unexpected Completion

1 Respond Per PCI Express Specification
Header is logged where possible.

UNCERRSTS
HDRLOG

87 PCI Express Flow Control
Protocol Error4

1 Respond Per PCI Express Specification UNCERRSTS

88 Received ERR_NONFATAL
Message from downstream
device

1 Respond per PCI Express specification RPERRSTS

89 Received a Request from a
downstream component
that is unsupported

1 For Non-posted requests: 'unsupported
request' response is sent and a bit in
XPUNCERRSTS is logged. For posted
requests, they are simply logged and
dropped. Header is logged where possible.

UNCERRSTS
HDRLOG

8A Received a Request from a
downstream component
that is to be completer
aborted

1 For Non-posted requests: 'completer abort'
response is sent and a bit in XPUNCERRSTS
is logged. For posted requests, they are
simply logged and dropped. Header is
logged where possible.

UNCERRSTS
HDRLOG

8B ACS Violation 1 Respond per PCI Express specification. An
ACS violation will cause a violating request
to be aborted and logged. Header is logged
where possible.

UNCERRSTS
HDRLOG

90 PCI Express Malformed TLP4 2 Respond Per PCI Express Specification
Header is logged where possible.

UNCERRSTS
HDRLOG

91 PCI Express Data Link
Protocol Error4

2 Respond Per PCI Express Specification UNCERRSTS

92 PCI Express Receiver
Overflow

2 Respond Per PCI Express Specification UNCERRSTS

93 Surprise Down 2 Respond Per PCI Express Specification UNCERRSTS

94 Received ERR_FATAL
message from downstream
device

2 Respond Per PCI Express Specification RPERRSTS

97 Outbound switch header
queue parity error

2 Undefined. This is a fatal error for the given
root port.

XPUNCERRSTS

98 MSI writes greater than a
DWORD

1 Drop the transaction XPUNCERRSTS

99 Outbound Poisoned Data 1 The poisoned data packet is sent but logged
here.

XPUNCERRSTS

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 87

17.1.4 BIOS Update Log

BIOS logs any updates to the BIOS flash image using the following SEL format. One SEL entry is logged at

the start of the update, and another entry is logged when the update is completed.

The Firmware Naming table referred to in the table can be found in the Software-Arch specification.

OEM Data 2-4 refer to the version of the BIOS in the flash image.

Table 9 BIOS Update Event Log

Byte Field Description

1:2 Record ID SEL Record Id.

3 Record Type OEM System Event Record: 0xC1 (BIOS Update)

4:7 Timestamp Timestamp

8:10
Manufacturer
Id

IANA Enterprise ID. See Device ID command for details.

11 OEM Data 1

Update Status [7:4]

0x0 – Success

0xF – Failure

Update Stage [3:0]

0x0 – Update Started

0x1 – Update Completed

12 OEM Data 2
Current BIOS Major Version

[7:0] Major Version – corresponds to position 4 of the Firmware Naming table

13 OEM Data 3
Current BIOS Minor Version

[7:0] Minor Version – corresponds to position 5 of the Firmware Naming table

14 OEM Data 4

Current BIOS Additional Version Information

[7:4] Hotfix Version – corresponds to the numeric value in position 6 of the Firmware
Naming table

[3:0] Development/Test Version – corresponds to position 7 of the Firmware
Naming table

15 OEM Data 5 Reserved = 0x00

16 OEM Data 6 Reserved = 0x00

Example record:

The current BIOS version is C2000.BS.1C02.GN2.1.bin. The following command is used to update the BIOS

to C2000.BS.1C03.GN1.3.bin:

88 November 1, 2017

AFUWINx64.EXE C2000.BS.1C03.GN1.3.bin /X /P /N /R /B /ME /REBOOT

At the start of update, a SEL entry with the following fields is logged:

OEM Data 1 = 0x00

OEM Data 2 = 0x01 (mapped from 1C02, major version = 0x1C)

OEM Data 3 = 0x02 (mapped from 1C02, minor version = 02)

OEM Data 4 = 0x21 (mapped from GN2.1, hotfix = 2, test = 1)

At the end of the update, if the update completed successfully, a SEL entry with the following fields is

logged:

OEM Data 1 = 0x01

OEM Data 2 = 0x01 (mapped from 1C03, major version = 0x1C)

OEM Data 3 = 0x03 (mapped from 1C03, minor version = 03)

OEM Data 4 = 0x13 (mapped from GN1.3, hotfix = 1, test = 3)

17.1.5 Intel Memory Reference Code (MRC) Errors

BIOS logs any errors that occur during memory initialization using the following SEL format. The MRC

major and minor error codes are provided by Intel’s Grantley-HSX-EP_RC_User_Guide, in the MRC Error

Codes and Warning Log sections.

Table 10 Intel Memory Reference Code (MRC) Error Event Log

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 89

Byte Field Description

1:2 Record ID SEL Record Id.

3 Record Type OEM System Event Record: 0xC2 (MRC Error)

4:7 Timestamp Timestamp

8:10
Manufacturer
Id

IANA Enterprise ID. See Device ID command for details.

11 OEM Data 1 MRC Major Error Code

12 OEM Data 2 MRC Minor Error Code

13 OEM Data 3 Socket Number or 0xFF (unspecified)

14 OEM Data 4 Channel Number or 0xFF (unspecified)

15 OEM Data 5 DIMM Number or 0xFF (unspecified)

16 OEM Data 6 Rank Number or 0xFF (unspecified)

17.1.6 Intel® Xeon® Scalable Processor IIO Module Errors

The BIOS logs errors in the CPU IIO module using the following SEL format. Refer to the IIO Module Error
Codes section in the Intel® Skylake EDS Vol. 1 specification for details and the error codes.

Table 11 Intel® Xeon® Scalable Processor IIO Module Errors

90 November 1, 2017

Byte Field Description

1:2 Record ID SEL Record Id.

3 Record Type System Event Record: 0x02

4:7 Timestamp Timestamp

8:9 Generator Id
Byte 1 = 0x01 (Generated by BIOS)

Byte 2 = 0x00

10 Evm Rev 0x04

11 Sensor Type 0x13 (Critical Interrupt)

12 Sensor # 0xA7

13
Event Dir |
Event Type

[7] Assertion: 0
[6:0] Event Type: 0x70 (OEM Discrete)

14 Event Data 1

Bit [7:6] ‘b10
Bit [5:4] ‘b10
Bit [3:0] 0x00 = Other IIO

15 Event Data 2
Bit [7:0] Error ID. Refer to the IIO Module Error Codes section in the Intel® Haswell
EDS Vol. 1 (section 11.1.7) for details.

16 Event Data 3

Bit [7:5] CPU Number

Bit [4:3] Reserved

Bit [2:0]

‘b000 = IRP0 Error

‘b001 = IRP1 Error

‘b010 = IIO-Core Error

‘b011 = VT-d Error

Other values are reserved

17.1.7 BIOS Firmware Volume (FV) Checksum

The firmware volume header checksum is used to verify BIOS binary corruption. The FV header checksum

is logged to the SEL using the following format.

Boot block FV SEL entry needs to be done as soon as the IPMI stack is available in PEI. FV Main SEL entry

should be done before executing any module from FV main.

The FV header Checksum is a 16-bit checksum of the firmware volume header. A valid header sums to

zero.

Table 12 BIOS FV Checksum Error Event Log

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 91

Byte Field Description

1:2 Record ID SEL Record Id.

3 Record Type OEM System Event Record: 0xC3 (BIOS FV Checksum)

4:7 Timestamp Timestamp

8:10
Manufacturer
Id

IANA Enterprise ID. See Device ID command for details.

11 OEM Data 1

Firmware Volume Type

0x1 – FV Boot block

0x2 – FV Main

0x3 to 0xFF - Reserved

12 OEM Data 2
Checksum – LSB

[7:0] - LSB of FV header checksum

13 OEM Data 3
Checksum – MSB

[7:0] - MSB of FV header checksum

14 OEM Data 4 Reserved = 0x00

15 OEM Data 5 Reserved = 0x00

16 OEM Data 6 Reserved = 0x00

19.1.9 BIOS Settings change SEL event

BIOS need to log the SEL entry when BIOS settings are changed. BIOS settings can be changed using

different methods like listed below.

1. Through the BIOS setup

2. Using OS based utility (ex: SCEWIN)

3. IPMI interface (ex: Set System Boot Options IPMI Command)

Below table specifies the format of the SEL log. BIOS logs the SEL entry after the BIOS settings have applied.

Table 198 BIOS Settings change SEL event

92 November 1, 2017

Byte Field Description

1:2 Record ID SEL Record Id.

3 Record Type OEM System Event Record: 0xC4 (BIOS Settings change)

4:7 Timestamp Timestamp

8:10
Manufacturer
Id

IANA Enterprise ID. See Device ID command for details.

11 OEM Data 1

BIOS settings change method

0x1 – BIOS Setup

0x2 – OS based utility

0x3 – IPMI Interface

0x4 to 0xFF - Reserved

12 OEM Data 2 Reserved = 0x00

13 OEM Data 3 Reserved = 0x00

14 OEM Data 4 Reserved = 0x00

15 OEM Data 5 Reserved = 0x00

16 OEM Data 6 Reserved = 0x00

Open Compute Project  Project Olympus Intel® Xeon® Scalable Processor BIOS

Specification

http://opencompute.org 93

18 Appendix: Commonly Used of Acronyms

This section provides definitions of acronyms used in the WCS system specifications.

Acronym Description

ACPI Advanced Configuration and Power Interface

AHCI Advanced Host Controller Interface

BIOS Basic input/output System

BMC Baseboard Management Controller

CM Chassis Manager

CMOS Complementary Metal-Oxide-Semiconductor

CTS Clear to Send

DDR4 Double Data Rate Type 4

DHCP dynamic host configuration protocol

DIMM dual inline memory module

ECC Error Correcting Code

EEPROM Electrically Erasable Programmable Read-Only Memory

FRU Field Replaceable Unit

GPIO General Purpose Input Output

I2C Inter Integrated Circuit

IPMI Intelligent Platform Management Interface

LAN Local Area Network

LPC Low Pin Count

PCI Peripheral Component Interconnect

PCIe PCI Express

PCH Platform Control Hub

PDU Power Distribution Unit

PECI Platform Environment Control Interface

PNP Plug and Play

POST Power-on Self Test

PSU Power Supply Unit

PXE Pre-boot Execution Environment

REST Representational State Transfer

RTS Ready to Send

RU Rack Unit

SAS Serial Attached SCSI

SATA Serial AT Attachment

SDR Sensor Data Record

SMBUS System Management Bus

SMBIOS System Management BIOS

SPD Serial Presence Detect

SPI Serial Peripheral Interface

SSD Solid State Drive

TDP Thermal Design Power

94 November 1, 2017

TPM Trusted Platform Module

UART Universal Asynchronous Receiver/Transmitter

UEFI Unified Extensible Firmware Interface

WMI Windows Management Interface

