

OCP GPU & ACCELERATOR MANAGEMENT

INTERFACES

Version 0.5

Authors: (in alphabetical order)

David Blocker, NVIDIA

James Bodner, NVIDIA

Deepak Kodihalli, NVIDIA

Choudary Maddukuri, Microsoft

Linda Wu, NVIDIA

Justin York, Google

Executive Summary
Management of GPUs is not standardized, resulting in significant effort and time to onboard each new HW

design. The lack of standardization is also a burden on suppliers who must accommodate varying requirements

from their customers. This document describes industry standard formats and protocols that make it easier for

 PAGE 2

CSPs (Cloud Service Providers) to onboard new GPU and accelerator designs with less toil and faster time to

market while reducing manageability permutations for suppliers.

Table of Contents

Table of Contents

Executive	Summary	 1	

Table	of	Contents	 2	

1	 Introduction	 4	

2	 Overview	 4	

2.1	 Discrete	Accelerator	Devices	Manageability	...	4	
2.1.1	 Static	discovery	 5	
2.1.2	 Transport	Protocol	 5	
2.1.3	 Attestation	 5	
2.1.4	 Management	capability	discovery	5	
2.1.5	 Base	monitoring	and	control	 5	
2.1.6	 Firmware	management	 6	

2.2	 UBB	Accelerator	Devices	Manageability	...	6	
2.2.1	 Static	discovery	 6	
2.2.2	 Attestation	 6	
2.2.3	 Base	monitoring	and	control	 6	
2.2.4	 Firmware	management	 6	

3	 Discrete	Accelerator	Device	Interfaces	 7	

3.1	 Access	Frequency	...	7	

3.2	 FRU	...	7	

3.3	 MCTP	...	8	
3.3.1	 Bus	Owner	and	EIDs	 8	
3.3.2	 MCTP	Discovery		 8	

 PAGE 3

3.3.3	 Bridge	Routing	Table	Initialization:	 11	
3.3.4	 Hot	Join	flow:	 12	
3.3.5	 MCTP	command	details	 13	

3.4	 SPDM	..	14	
3.4.1	 Required	SPDM	Commands	 14	
3.4.2	 Required	Capabilities	for	SPDM	 15	
3.4.3	 Required	Algorithms	for	SPDM	 15	

3.5	 PLDM	..	15	
3.5.1	 Discrete	GPU/Accelerator	Modules	 16	
3.5.2	 PLDM	Sensors	&	Effectors	 16	
3.5.3	 Entity	Association	 17	
3.5.4	 Sensor	&	Effector	Entity	Mapping	20	
3.5.5	 PLDM	Type	IDs	 24	

3.6	 MCTP	OEM	VDM	..	25	
3.6.1	 Management	Protocol	Structures	25	
3.6.2	 Completion	Codes	 28	
3.6.3	 OEM	Events	 29	

4	 UBB	Accelerator	Device	Interfaces	 29	

4.1	 Redfish	...	29	
4.1.1	 Redfish	Tree	 29	
4.1.2	 Location	Objects	30	
4.1.3	 RAS Error Injection	 31	

4.2	 Out-of-Band	Interfaces	(MCTP,	PLDM,	and	SPDM)	...	36	

5	 Conclusion	 36	

6	 Glossary	 36	

7	 References	 36	

8	 License - Open Web Foundation (OWF) CLA	 37	

9	 OCP Tenets	 38	

 PAGE 4

10	 About	Open	Compute	Foundation	 39	

1 Introduction
Advances in accelerator-based workloads are driving the need for ever-faster bring-up and deployment of new

accelerator-based system designs. Different accelerator components from different vendors implement a wide

variety of management interfaces with little commonality. This lack of commonality causes extra toil and

increases time-to-market for deploying new, innovative designs.

This document describes a common and generic framework for managing GPU and accelerators by way of

management interfaces designed using standards-based management protocols.

This document covers both discrete accelerator devices (e.g., PCI-e CEM cards) and Universal Baseboard (UBB)

designs (e.g., OCP OAI HGX).

2 Overview
The section specifies the interfaces for managing both Discrete and UUB design GPU/Accelerator’s.

2.1 Discrete Accelerator Devices Manageability

Discrete accelerator devices are GPUs packaged as standard CEM form-factor PCI-e adapter. Discrete accelerator

device management can be broken down into several categories, each of which tie-in to various industry

standards.

Table 1 – DMTF Standard Protocols
Manageability Objective Technology Standard
Static discovery IPMI FRU Platform Management FRU Information

Storage Definition (rev. 1.3)
Transport protocol MCTP DMTF DSP0236 revision 1.3.1 or later
Attestation SPDM DMTF DSP0274 revision 1.2.1 or later
Management capability
discovery

PLDM Type 0 DMTF DSP0240 revision 1.1.0 or later

Base monitoring and control PLDM Type 2 DMTF DSP0248 revision 1.2.2 or later
Accelerator monitoring and
control

PLDM Type 2 WIP DMTF DSP2061

Firmware management PLDM Type 5 DMTF DSP0267 revision 1.2.0 or later
File I/O PLDM Type

(Future/TBD)
WIP DMTF DSP0242

 PAGE 5

2.1.1 Static discovery

The initial, static discovery of devices seeks to obtain primarily immutable information about the discrete

accelerator device. This is done by reading the contents of a dedicated FRU EEPROM contained within the

device.

2.1.2 Transport Protocol

MCTP is the media independent protocol for communication among management controllers within system.

This section below describes the Bus owner relationship, the endpoint discovery, EID assignment, the bridges

and the EID pool assignments and corresponding flows.

2.1.3 Attestation

Once static and MCTP endpoint discovery is complete, an important step is attestation of the device. SPDM

(DSP0274) operates over MCTP as a standardized mechanism to authenticate hardware identity and measure

firmware identity. Using SPDM, the management controller serves as an SPDM requestor and discovers and

negotiates the security capabilities to be used by the responder (discrete accelerator device). The management

controller then authenticates the responder. Lastly, the management controller requests firmware

measurements from the responder.

Note: SPDM attestation may happen repeatedly at the discretion of the management controller and is not

limited to when the discrete accelerator device is initially discovered.

2.1.4 Management capability discovery

Once the hardware discrete accelerator device has been authenticated and measured, continuous management

begins by discovering the management capabilities of the device. For standards-based management,

subsequent discovery of the device capabilities happens by way of PLDM Type 0 (base) discovery.

2.1.5 Base monitoring and control

Once basic manageability capabilities are discovered dynamically from the device, continuous monitoring and

control is performed by way of PLDM Type 2 (DSP0248).

 PAGE 6

2.1.6 Firmware management

Standards-based device firmware management requires support for PLDM Type 5 (DSP0267). DSP0267 provides

a standardized way to query the version of the device's firmware (inventory) and to push firmware to the device

(update).

2.2 UBB Accelerator Devices Manageability
Universal baseboard (UBB) designs are a multi-GPU/accelerator devices with high-speed intra-GPU
interconnects, PCI-e switches and retimers, and complex topologies. In those HW devices the expectation is the
UBB must have its own management controller (subsequently referred to as the UBBMC) with a standard
Redfish interface exposed via a network connection and also DMTF MCTP & PLDM for high-frequency telemetry
(e.g. thermal loop data) via sideband connection (I2C/I3C).

Table 2 – DMTF Standard Protocols
Manageability Objective Technology Description
Static discovery IPMI FRU Platform Management FRU Information

Storage Definition (rev. 1.3)
Transport protocol Redfish/MCTP Redfish via NW and MCTP via I2C/I3C
Attestation SPDM Redfish and I2C/MCTP
Accelerator monitoring and
control

Redfish/PLDM Type
2

 Comprehensive monitoring via Redfish and
High frequency telemetry via I2C/I3C

Firmware management Redfish Via Redfish

2.2.1 Static discovery

UBB accelerator designs are expected to present a FRU EEPROM (identical to what is required for discrete

accelerator devices) and a UBBMC with a Redfish and limited MCTP and PLDM interface.

2.2.2 Attestation

SPDM attestation is managed by the BMC but control is effected through a UBBMC Redfish interface.

2.2.3 Base monitoring and control

UBB accelerator designs are managed predominantly through Redfish implemented by the UBB BMC. High

frequency and critical telemetry like power and thermal are managed via MCTP/PLDM through a sideband

connection like I2C/I3C.

2.2.4 Firmware management

UBB accelerator designs shall support firmware update through Redfish implemented by the UBBMC.

 PAGE 7

3 Discrete Accelerator Device Interfaces
This section lists the minimum set of protocols and OEM extension/format that any GPU/accelerator vendor

needs to support on their discrete accelerator devices for hyperscalers to seamlessly manage these devices

without any additional vendor/device specific work.

3.1 Access Frequency

The following table provides a high-level mapping of Data/Telemetry categories to protocols including the

required frequency of access that must be reliably supported.

Table 3 – Discrete Accelerator Management Protocols
Telemetry
Data/Attribute
(unordered)

Protocol Use Case Frequency

Monitoring (Sensors) PLDM Type 2 e.g. Thermal,
power…

1s

Inventory MCTP/PLDM On demand
Discovery MCTP On demand
Support Dump Future direction: PLDM Type

(DSP0242 - WIP)
Comprehensive
triage

On demand

Debug Logs Future direction: PLDM Type
(DSP0242 - WIP)

 On demand

Updates PLDM Type 5
Counters Future direction: PLDM and

MCTP OCP OEM
Tuning "seconds"

Configuration/Settings PLDM Type 2 (Effectors) On demand

3.2 FRU

Static discovery of the discrete accelerator device is accomplished by accessing a FRU EEPROM.

The discrete accelerator device shall support an i2c/i3c-based EEPROM that carries and IPMI FRU formatted data
supporting the following requirements:

• Min 512bytes, ideally 4k (512byte min forces 2byte offsets)
• Internal Use Area: Optional
• Chassis Info Area: Optional
• Board Info Area: Mandatory (see below)
• Product info area: Mandatory (80 Bytes Minimum
• Multi Record Area: Mandatory for any OEM extensions and the last area so that it extends.

It is mandatory that the FRU EEPROM device be a dedicated secondary device on the bus and not be subject to
multiple primary controllers (e.g., one primary on the CEM card and the other primary on the host board.) Multi-
primary designs are difficult to reliably marshal access to, reducing system reliability.

 PAGE 8

The following table lists FRU areas that must be populated.

Table 4 – IPMI FRU Fields
FRU Area Fields Required w/ Valid Value
Common Header Common Header N
Chassis Info Area Chassis Type N

Chassis Part Number N

Chassis Serial Number N

Board Info Area Mfg Date/Time N

Board Manufacturer Y

Board Product Name Y

Board Serial Number Y

Board Part Number Y

Product Info Area Manufacturer Name Y

Product Name Y

Product Part/Model Number Y

Product Version N

Product Serial Number Y

Multi-Record Area Mandatory for any OEM extensions and the
last area so that it extends.

Y, if applicable

3.3 MCTP

This section describes the MCTP discovery and inventory flows and lists minimum required commands. This

section also proposes and defines a high-level generic VDM command format for data that needs OEM

extensions.

3.3.1 Bus Owner and EIDs

The hyperscaler’s BMC is the topmost bus owner and all other devices are endpoint devices. The endpoint

devices can themselves be a bus owner when they are connected to 2 or more MCTP buses (also referred to as a

“bridged device”. The “topmost bus owner” is responsible for allocating ALL EIDs. It assigns a pool of EIDs to the

bridge devices so that they allocate those EIDs to the device behind them.

3.3.2 MCTP Discovery

MCTP discovery/re-discovery happens on the following conditions:

 PAGE 9

• AC power ON
• DC power Cycle
• BMC reset
• Discovery Notify command

Following an AC/DC power ON, the discovery can occur any time during the system boot and typically complete

before the host operating system has booted. The end device should be ready in less than 60sec from power ON

and the PCI-e enumeration must not impact the I2C/I3C communication.

The flow charts below detail the MCTP discovery and EID assignment flows.

 Figure 1 – MCTP Discovery Flow

 PAGE 10

 PAGE 11

3.3.3 Bridge Routing Table Initialization:

Figure 2 – MCTP Bridge Routing Flow

 PAGE 12

3.3.4 Hot Join flow:

Figure 3 – MCTP Hot Join Flow

 PAGE 13

3.3.5 MCTP command details

Table 4 lists the MCTP control commands and if they are required for use. This table is very similar to Table 12

within the DSP0236 specification with deviations highlighted in yellow.

Table 5 – MCTP Commands
Cmd
Code

Command Name Endpoint Bridge Notes

0x01 Set Endpoint ID Ma Ng Ma Mg
0x02 Get Endpoint ID Ma Og Ma Mg
0x03 Get Endpoint

UUID
Ca1 Og Ca1 Og 1. Mandatory if device connects

to multiple buses.
0x04 Get MCTP Version

Support
Ma Og Ma Mg1 1. Bridges must use this

command to verify compatible
MCTP control protocol versions.

0x05 Get Message Type
Support

Ma Og Ma Og

0x06 Get Vendor
Defined Message
Support

Ca1 Og Ca1 Og 1. Mandatory to accept if device
used vendor defined messaging.

0x07 Resolve Endpoint
ID

Na Og Ma Og

0x08 Allocate Endpoint
IDs

Na Ng Ma Ng

0x09 Routing
Information
Update

Oa Og Ma Ng

0x0A Get Routing Table
Entries

Na Og Ma Og

0x0B Prepare for
Endpoint
Discovery

Ca1 Ng Ca1 Ng 1. Mandatory on a per bus basis
to support endpoint discovery.

0x0C Endpoint
Discovery

Ca1 Ng Ca1 Ng 1. Mandatory on a per bus basis
to support endpoint discovery.

0x0D Discovery Notify Na Cg1 Ca1 Cg1 1. Mandatory if physical binding
supports hot joins (e.g. I3C and PCI
VDM).

0x0E Get Network ID Oa Og Oa Og
0x0F Query Hop Na Og Ma Og
0x10 Resolve UUID Na Og Ca1 Og 1. Mandatory if device and/or any

connected devices connects to
multiple buses.

0x11 Query rate limit Ca1 Og Ca1 Og 1. Mandatory if device can
support more than 1 request at a
time.

 PAGE 14

0x12 Request TX rate
limit

Oa Og Ma Og 1. Bridges must allow for
endpoints to change their rate
limits

0x13 Update rate limit Oa Og Oa Og
0x14 Query Supported

Interfaces
Oa Og Oa Og

Key for Endpoint/Bridge columns:
Ma = mandatory to accept
Mg = mandatory to generate
Oa = optional to accept
Og = optional to generate
Ca = conditional to accept (see notes)
Cg = conditional to generate (see notes)
Na = not applicable to accept
Ng = not applicable to generate

3.4 SPDM

The OCP profile for accelerator attestation describes the set of SPDM commands, capabilities, ciphers, and hash
algorithms required to deliver a GPU/accelerator that complies with OCP security requirements.

This profile will ultimately exist in a separate publication from the OCP Security Workgroup (Attestation of

System Components). That document is in a pre-publication state so the content is included here for review

purposes.

• Accelerator attestor devices MUST support the SPDM standard and requirements below to be compliant

with the “OCP Attestation SPDM Profile for Accelerators”

• Attestor devices MUST conform to the set of capabilities as defined in the table “Required Capabilities

for SPDM”.

• Attestor devices should support the current SPDM version and MUST support version 1.1 or higher

3.4.1 Required SPDM Commands

Table 6 – SPDM Minimum Required Commands
SPDM Version Command Required

1.0/1.1 GET_VERSION Y
GET_CAPABILITIES Y
NEGOTIATE_ALGORITHMS Y
GET_DIGESTS Y
GET_CERTIFICATE Y
CHALLENGE Y
GET_MEASUREMENTS Y
GET_CSR Y

 PAGE 15

1.2
(Recommended)

SET_CERTIFICATE Y

CHUNK_SEND Y
CHUNK_GET Y

3.4.2 Required Capabilities for SPDM

The following table lists the SPDM capabilities as defined in the CAPABILITIES response that are

required for attestor devices that to be compliant with the “OCP Attestation SPDM Profile for Accelerators”

 Table 7 – SPDM Required Capabilities
Required Capability Notes

CERT_CAP GET_DIGESTS and GET_CERTIFICATE
CHAL_CAP CHALLENGE
MEAS_CAP 10b (Can measure and generate signatures)
MEAS_FRESH_CAP 1 (Always return fresh measurements)

3.4.3 Required Algorithms for SPDM

Attestor devices are allowed a large number of algorithm combinations under the SPDM specification. To

simplify capability matching, the attestor devices must follow the guidelines in the following tables.

 Table 8 – SPDM Minimum Required Algorithms

 Algorithm Type Recommended Capability

Asymmetric TPM_ALG_ECDSA_ECC_NIST_P521
Measurement Hash TPM_ALG_SHA_512

TPM_ALG_SHA3_384
TPM_ALG_SHA3_512

3.5 PLDM

This section describes how to model a GPU/accelerator PCI-e adapter using PLDM Monitoring and Control

protocol. It provides general guidelines on how to model the adapters and their components so that the CSPs

can implement a common and generic framework for monitoring, control, and component firmware updates

across devices and vendors.

The guidelines are based on the PLDM standards as define by the DSP0248_1.1.0.

 PAGE 16

3.5.1 Discrete GPU/Accelerator Modules

The block diagram below is a generic representation of an accelerator adapter and can vary based on the

vendor. Here, the discrete accelerator device represents the overall adapter and enclosed components as

follows:

• SMC: This is the management controller (Satellite Management Controller) which implements PLDM
and communicates to the Host BMC.

• GPUx: One or more GPU/accelerator controllers
• InterLink: one or more controllers that enable a high-speed connection between GPUs
• PCI-e switch/controller

The block diagram also lists a subset of sensors/effectors that are supported by various components. The

following sections describe how to model various sensors and controls via PLDM sensors, effectors and

corresponding PDR’s.

Figure 4 – PCIe CEM card

3.5.2 PLDM Sensors & Effectors

The section below provides high-level details of sensors and effectors and presents a minimum set of

requirements.

MC

System/Add-in card (Accelerator)

GPU
GPU

Total
power Temps VR’s

GPUx

Power
Temps VR’s

Inter LinkPCIe

Composite
Health

Health

Reset

Health
Health

Power
Cap

RTD

Power
cap

 PAGE 17

3.5.2.1 Sensors

The implementation must support both numeric and state sensors. At a minimum the sensors listed below are

required if present in the hardware design.

The temperature and power sensors are standard numeric sensors supported by the modules whereas the

composite health sensor represents the overall health of the adapter.

Table 9 – PLDM Sensors and Types
Sensors Sensor Type Add-in Card MC GPU Link PCIe
Temp Numeric • • •
Power Numeric • •
Total power Numeric •
VR’s Numeric • •
Composite
Health

State •

Health State • • • • •

3.5.2.2 Effectors

The implementation must support both numeric and state effectors. At a minimum, the effectors listed below

are required if supported by the hardware design.

The power cap effector must be supported at the discrete accelerator device (adapter) level and is optional at

the GPU/accelerator module. The reset and reset to defaults (RTD) effectors must be supported by the

management controller.

Table 10– PLDM Effectors
Effectors Add-in Card MC GPU Link PCIe
Power Cap • •
RTD •
Reset •

3.5.3 Entity Association

The following section describes how to model the entity association PDRs. These PDRs represent modules in a

hierarchical model. The sections describe both physical and logical associations.

 PAGE 18

3.5.3.1 Physical Entity Association

These physical association PDRs are used to describe physical components and their association. The entity

association PDR uses the following references to describe the modules and their association as defined in

DSP0248:

• Container ID (an opaque number)
• Contained ID (an opaque number)
• Entity type: The entity type ID are as defined in DSP0248
• Entity instance: Module instance such as “GPU 0” or “GPU 1”.

Figure 5 – Component Hierarchy

In the Figure below, the PDRs on the left side and the right side represent the same component hierarchy except

via a single PDR vs multiple PDRs; either implementation is valid.

System Board Add-in Card

MC

GPU

InterLink

PCI-e

 PAGE 19

Figure 6 Entity Association PDRs

3.5.3.2 Logical Entity Association

Logical PDRs are used to associate a set of physical components to a logical entity. In this example the logical

entity is “cooling domain”. This helps to group a set of sensors (in this example temperature sensors) of various

physical modules to a single logical entity. This will help the management controller to associate these groups of

sensors to the thermal algorithms used for fan and/or power control without requiring prior knowledge.

Container Entity

Entity Association PDR

Entity type = physical |Add-in-Card=68

entityInstanceNumber = 1

containerID = SYSTEM

association type = physical

recordHandler

containerID = 123

Contained Entity 1

Entity type = physical |GPU = 135

entityInstanceNumber = 1

containerID = 123

Contained Entity 2

Entity type = physical |GPU

entityInstanceNumber = 2

containerID = 123

Contained Entity 3

Entity type = physical |Link = 174

entityInstanceNumber = 1

containerID = 123

Contained Entity 4

Entity type = physical |PCI-e = 166

entityInstanceNumber = 2

containerID = 123

Contained Entity 5

Entity type = physical |MC = 137
entityInstanceNumber = 2

containerID = 123

Container Entity

Entity type = physical |Add-in-Card

entityInstanceNumber = 1

containerID = SYSTEM

association type = physical

recordHandler

containerID = 123

Contained Entity 1

Entity type = physical |GPU

entityInstanceNumber = 1

containerID = 123

Contained Entity 2

Entity type = physical |GPU

entityInstanceNumber = 2

containerID = 123

Container Entity

Entity type = physical |Add-in-Card

entityInstanceNumber = 1

containerID = SYSTEM

association type = physical

recordHandler

containerID = 123

Contained Entity 1

Entity type = physical |Link

entityInstanceNumber = 1

containerID = 123

Contained Entity 2

Entity type = physical |PCI-e

entityInstanceNumber = 1

containerID = 123

Container Entity

Entity type = physical |Add-in-Card

entityInstanceNumber = 1

containerID = SYSTEM

association type = physical

recordHandler

containerID = 123

Contained Entity 1

Entity type = physical |MC

entityInstanceNumber = 1

containerID = 123

Entity Association PDR Entity Association PDR Entity Association PDR

 PAGE 20

Figure 7 Logical Entity Association

3.5.4 Sensor & Effector Entity Mapping

The following section provides a list of examples showing how to map various sensors and effector to entity

association PDRs so that the Host BMC can map the sensors to the actual physical modules.

Container Entity

Entity Association PDR

Entity type = logical |cooling domain=92

entityInstanceNumber = 1

containerID = SYSTEM

association type = Logical

recordHandler

containerID = 500

Contained Entity 1

Entity type = physical |GPU

entityInstanceNumber = 1

containerID = 123

Contained Entity 2

Entity type = physical |GPU

entityInstanceNumber = 2

containerID = 123

Contained Entity 3

Entity type = physical |Link

entityInstanceNumber = 1

containerID = 123

Contained Entity 4

Entity type = physical |PCI-e

entityInstanceNumber = 2

containerID = 123

Contained Entity 5

Entity type = physical |MC
entityInstanceNumber = 2

containerID = 123

Container Entity

Entity Association PDR

Entity type = physical |Add-in-card

entityInstanceNumber = 1

containerID = SYSTEM

association type = Logical

recordHandler

containerID = 123

Contained Entity 1

Entity type = logical |Cooling domain=92

entityInstanceNumber = 1

containerID = 123

 PAGE 21

3.5.4.1 Numeric sensors

In the following example, a temperature sensor with sensor ID 10 belongs to GPU 1 while sensor ID 20 belongs to

an InterLink module.

Figure 8 Numeric Sensor PDRs

Container Entity

Entity Association PDR

Entity type = physical |Add-in-Card

entityInstanceNumber = 1

containerID = SYSTEM

association type = physical

recordHandler

containerID = 123

Contained Entity 1

Entity type = physical |GPU

entityInstanceNumber = 1

containerID = 123

Contained Entity 2

Entity type = physical |GPU

entityInstanceNumber = 2

containerID = 123

Contained Entity 3

Entity type = physical |Link

entityInstanceNumber = 1

containerID = 123

Contained Entity 4

Entity type = physical |PCI-e

entityInstanceNumber = 2

containerID = 123

Contained Entity 5

Entity type = physical |MC
entityInstanceNumber = 2

containerID = 123

Container Entity

Entity type = physical |GPU

entityInstanceNumber = 1

containerID = 123

Numeric Sensor PDR

sensorID = 10

baseUnit = Degrees C

Container Entity

Entity type = physical |Link

entityInstanceNumber = 1

containerID = 123

Numeric Sensor PDR

sensorID = 20

baseUnit = Degrees C

 PAGE 22

3.5.4.2 State sensors

In this example, the Health state sensor is associated to an Add-in card to represent the overall health.

Figure 9 State Sensor PRD

3.5.4.3 Effectors

In this example, the numeric effector with ID 50 represents the overall power cap at the Add-in card level.

Likewise, the State Effectors “Reset” and “Reset to defaults” are associated to the management controller.

Container Entity

Entity Association PDR

Entity type = physical |Add-in-Card

entityInstanceNumber = 1

containerID = SYSTEM

association type = physical

recordHandler

containerID = 123

Contained Entity 1

Entity type = physical |GPU

entityInstanceNumber = 1

containerID = 123

Container Entity

Entity type = physical |Add-in-card

entityInstanceNumber = 1

containerID = 123

State Sensor PDR

sensorID = 50

stateSetID = Health State

 PAGE 23

Figure 10 Effecter PDR

3.5.4.4 Logical sensor mapping

The mapping below associate sensor ID 15 of GPU 1 and sensor ID 25 of the InterLink module to the cooling

domain entity.

Container Entity

Entity Association PDR

Entity type = physical |Add-in-Card

entityInstanceNumber = 1

containerID = SYSTEM

association type = physical

recordHandler

containerID = 123

Contained Entity 1

Entity type = physical |GPU

entityInstanceNumber = 1

containerID = 123

Container Entity

Entity type = physical |Add-in-card=68

entityInstanceNumber = 1

containerID = 123

Numberic Effecter PDR

sensorID = 50

baseUnit = watts

Container Entity

Entity type = physical |Add-in-card

entityInstanceNumber = 1

containerID = 123

State Effecter PDR

sensorID = 50

setStateID = Boot/Restart = 192

Container Entity

Entity Association PDR

Entity type = physical |Add-in-Card

entityInstanceNumber = 1

containerID = 123

association type = physical

recordHandler

containerID = 123

Contained Entity 1

Entity type = physical |MC

entityInstanceNumber = 1

containerID = 123

Container Entity

Entity type = physical |MC

entityInstanceNumber = 1

containerID = 123

State Effecter PDR (Reset to Defaults)

sensorID = 50

stateSetID = OEM = 40000

 PAGE 24

Figure 11 Logical Sensor Mapping PDRs

3.5.5 PLDM Type IDs

The following table lists the Type IDs used to represent the Accelerator adapter as per DSP0249.

Table 11 – PLDM IDs
Component Entity Entity ID
Management Controller Management controller 137
Add-in card Add-in card 68
GPU Processor 135
InterLink Inter-processor bus 174
PCI-e PCI Express Bus 166

Container Entity

Entity Association PDR

Entity type = logical |cooling domain=92

entityInstanceNumber = 1

containerID = SYSTEM

association type = Logical

recordHandler

containerID = 500

Contained Entity 1

Entity type = physical |GPU

entityInstanceNumber = 1

containerID = 123

Contained Entity 2

Entity type = physical |GPU

entityInstanceNumber = 2

containerID = 123

Contained Entity 3

Entity type = physical |Link

entityInstanceNumber = 1

containerID = 123

Contained Entity 4

Entity type = physical |PCI-e

entityInstanceNumber = 2

containerID = 123

Contained Entity 5

Entity type = physical |MC
entityInstanceNumber = 2

containerID = 123

Container Entity

Entity type = physical |GPU

entityInstanceNumber = 1

containerID = 500

Numeric Sensor PDR

sensorID = 15

baseUnit = Degrees C

Container Entity

Entity type = physical |Link

entityInstanceNumber = 1

containerID = 500

Numeric Sensor PDR

sensorID = 25

baseUnit = Degrees C

Container Entity

Entity Association PDR

Entity type = physical |Add-in-card

entityInstanceNumber = 1

containerID = SYSTEM

association type = Logical

recordHandler

containerID = 123

Contained Entity 1

Entity type = logical |Cooling domain=92

entityInstanceNumber = 1

containerID = 123

 PAGE 25

3.6 MCTP OEM VDM

This section lists a reference implementation for how a device may expand telemetry data over MCTP when

existing PLDM protocols are insufficient. It should be expected that device vendors will have additional OEM

telemetry that will be harvested by the management controller that doesn’t meet the existing definition of the

PLDM Type 2 ecosystem. Fundamentally, the OCP group desires to push PLDM DMTF standards as quickly as

possible but acknowledges that an OEM path for passing data is unavoidable.

3.6.1 Management Protocol Structures

3.6.1.1 Request Message Format

Table 12 – Request Message

Byte 1 Byte 2 Byte 3 Byte 4

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Bytes
0-3

Reserved

Hdr
Version

Destination endpoint
ID

Source endpoint ID

SOM EOM Pkt Seq

TO Message
Tag

Bytes
4-7

IC

Message type

PCI Vendor ID MSB

PCI Vendor ID LSB

RQ D Rsvd

Instance ID

Bytes
8 - 11

OCP Message
Type/Version

Vendor Message Type
MSB

Vendor Message Type
LSB

 Data Size

Bytes
12-15 Payload

3.6.1.2 Field Layouts

Table 13 – Request Message Field Layouts

Byte Offset Bit Ranges Contents
0x00 7-4 Reserved

3-0 Header Version
0x01 7-0 Destination Endpoint ID
0x02 7-0 Source Endpoint ID
0x03 7 SOM

6 EOM
5-4 Packet Sequence Number

 PAGE 26

3 TO

2-0 Message eTag

0x04 7 IC
6-0 Message Type = 0x7E

0x05 – 0x06 F – 0 PCI Vendor ID

0x07 7 RQ
6 D
5 Reserved
4-0 Instance ID

0x08 7 – 4 OCP Type ID = 0x0C

3 – 0 OCP Version = 0x01

0x09 – 0x0A F – 0 Vendor Message Type

0x0B 8 – 0 Message Length, > 0

0x0C -

<variable>

 Message Data

3.6.1.3 Field Descriptions

Table 14 – Request Message Field Descriptions

Field Code Field
Size

Description

Message
Type

7 bits PCI vendor-defined message type. Always 0x7E.

PCI 2 bytes PCI defined vendor ID

RQ 1 bits Request bit. This bit is used to differentiate between request and other kind of
messages.
 would be set to 1b for request messages and event messages.
would be set to 0b for response messages.

D 1 bits Datagram bit. This bit is used to indicate whether the instance ID is being used for
asynchronous notifications (events) or for request/response tracking.
Would be set to 1b for asynchronous notifications (events).
 Would be set to 0b for requests/responses.
D and RQ bit combinations:

1. D = 0, RQ = 0b - Response message
2. D = 0, RQ = 1b - Request message
3. D = 1, RQ = 0b - Reserved
4. D = 1, RQ = 1b - Event messages

Rsvd 1 bits Reserved.

 PAGE 27

Instance ID 5 bits Used to uniquely identify a new instance of the API request. This is used to
differentiate requests sent to the same MCTP endpoint and to match a particular
instance of a request with a corresponding instance of the response.

OCP
Designator

1 byte 7-4: 0x0C: OCP Designator
3-0: 0x01: OCP version

OEM Message
Type

2 bytes Vendor message type.

Data size 1 byte Size of the trailing command-specific data in bytes. For requests which do not
require an additional data payload this field must be 0.

Payload variable Optional command-specific data.

3.6.1.4 Response Message Format

Table 15 – Response Message

Byte 1 Byte 2 Byte 3 Byte 4

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Bytes
0-3

Reserved

Hdr
Version

Destination endpoint
ID

Source endpoint ID

SOM EOM Pkt Seq

TO Message
Tag

Bytes
4-7

IC

Message type

PCI Vendor ID MSB

PCI Vendor ID LSB

RQ D Rsvd

Instance ID

Bytes
8 - 11

OCP Message
Type/Version

Vendor Message Type
MSB

Vendor Message Type
LSB

Reason Code Completion Code

Bytes
12-15 Payload

3.6.1.5 Fields Descriptions

Table 14 – Response Message Fields Description

Field Code Field
Size

Description

TO 1 bit Tag owner. Identifies whether the message tag was originated by the requester or
the responder.
Set to 0b for response messages.

 PAGE 28

RQ 1 bit Request bit. This bit is used to differentiate between request and other kind of
messages.
Would be set to 1b for request messages and event messages.
Would be set to 0b for response messages.

D 1 bit Datagram bit. This bit is used to indicate whether the instance ID is being used for
asynchronous notifications (events) or for request/response tracking.

Would be set to 1b for asynchronous notifications (events).
 Would be set to 0b for requests/responses.
D and RQ bit combinations:

1. D = 0, RQ = 0b - Request message
2. D = 0, RQ = 1b - Response message
3. D = 1, RQ = 0b - Reserved
4. D = 1, RQ = 1b - Event messages

Rsvd 1 bit Reserved.

Instance
ID

5 bits Used to uniquely identify a new instance of the API request. This is used to
differentiate requests sent to the same MCTP endpoint and to match a particular
instance of a request with a corresponding instance of the response.

OCP
Designato
r

 7-4: 0x0C: OCP Designator
3-0: 0x01: OCP version

OEM
Message
Type

2 byte OEM Message type. Represents a namespace for a group of related messages.

Reason
code

3 bit Used to return the command-specific reason code. This field expands on the status
returned in the completion code field.

Completio
n code

5 bits Used to return the status of the requested operation.

Data size 2 bytes Data size.

Payload variable Command-specific response payload.

3.6.2 Completion Codes

Table 16 – Completion Codes

Value Name Description
0x00 SUCCESS The command was accepted and completed

successfully.
0x01 ERR_REQUEST Generic error with processing the request.
0x02 ERR_INVALID_MSG_LENGTH The request message length was invalid.
0x03 ERR_INVALID_MSG_TYPE The message type used in the request is invalid or not

supported by the responder.
0x04 ERR_INVALID_CMD_CODE Invalid command code.

 PAGE 29

0x05 ERR_INVALID_ARG1 Invalid argument 1.
0x06 ERR_INVALID_ARG2 Invalid argument 2.
0x07 ERR_INVALID_DATA The message payload contained invalid data or illegal

parameter value.
0x08 ERR_CMD_NOT_SUPPORTED The command code is not supported for this message

type.
0x09 ERR_BUSY The responder is unable to service the request at this

time.
0x80 -
0xFF

Command Specific Command specific error codes.

3.6.3 OEM Events

A future version of this document will describe OEM event extensions supporting OEM VDM telemetry for cases

where standard PLDM events are insufficient/limited.

4 UBB Accelerator Device Interfaces
This section lists the minimum set of protocols and OEM extension/formats/schemas that any GPU/accelerator

vendor needs to support on their UBBMC so that hyperscalers can seamlessly manage these devices without any

additional vendor/device specific work.

4.1 Redfish

This section describes the high-level overview of Redfish organization. This section also proposes various

Redfish resource behaviors and OEM schema extensions.

4.1.1 Redfish Tree

The Redfish tree diagram offers a comprehensive overview of the UBBMC management capabilities and resource

organization. It provides an overview and relationships between different components. The resource label

“UBB” represents the complete Accelerator subsystem/enclosure within the server and the resource label

“OAM_X” represents each of the Accelerator module assembly.

 PAGE 30

Figure 12 UBB Redfish Model

4.1.2 Location Objects

The Location object referenced from many Redfish resources is very important in enabling automation at scale.

CSPs use various techniques to correlate the contents of the Location object into unambiguous mappings to

physical hardware in their data centers.

Table 17 – Location Object Example
"Location":
{
 "PartLocationContext": "Backplane 3, Slot 4",
 "PartLocation":
 {
 "LocationType": "Port",
 "ServiceLabel": "Port 1"
 }
}
Location property example.

Control
_x

RootService

Systems Chassis Managers Update
Service

Event
Service

BMC

LogServi
ces

OAM_X

UBB

Memory_x

Processors

GPU_X

Processo
rMetrics

Environm
entMetric

srics

Memory
Metrics

Environ
mentMe

trics

Subscript
ions

UBB

Environme
ntMetrics

Control
s

Fabric Telemetry
Service

Memory

Resource Resource
Collection

Sensor_
x

Port_x
Sensor_

x

MR_x MRD_xFWI_x
Subscript

ions_x

Firmware
Inventor

y

MetricRe
portDefi
nitions

Ports

Sensors

Sensors

PCIeDevi
ces_x

Assembl
y

Assembl
y

PCIeDevi
ces

MetricRe
ports

 PAGE 31

CSPs often rely on a tuple formed by the combination of the Location.PartLocationContext, and

Location.PartLocation to bind entities to external logical management controls. For this reason, the

Location resource, and its PartLocationContext, PartLocation.LocationType, and

PartLocation.ServiceLabel fields are required by CSPs in any resource that supports Location.

4.1.3 RAS Error Injection
The following section provides details about the error injection requirements for various hardware

component levels. This information is described in greater detail in the OCP GPU & Accelerator RAS

Requirements v0.5 specification. This document provides specific Redfish resource examples for Memory

and PCIe. These examples can be applied to other resources that GPU/accelerator vendors can support as

OEM extensions. The errors are injected via Redfish actions.

4.1.3.1 Injectable Hardware Components

The current version of this document provides schema details for two hardware components, memory and the

PCI-e interconnect.

Table 18 – Error Types

Error type Details Priority/Comments

Memory GPU SRAM and GPU DRAM (HBM) DDR memory is part of Host Motherboard and
is excluded from here.

PCIe errors • PCIe Switches, PCIe Network
devices, PCIe End point Devices
• PCIe Re-timers
• PCie Link

PCIe re-timers require special attention as
their errors are different from general PCIe
endpoint devices and PCIe Switches.
PCIe Links will have Link Width, Link Speed,
and Link Down Error considerations.

4.1.3.2 Memory Error Injection Attributes

Table 19 – Memory Error Attributes

Attribute Type Details Comments
Physical Device
Identification

Uses Redfish based URL Specifies the physical or logical device
that is the target of error injection.

Sub Device Identification Rank, Column, Row Level Additional details to pinpoint a specific
physical or logical device that is the
target of the error injection. Optional

Error Severity Correctable
Uncorrectable

Each device will have a specific
enumeration of allowed errors to inject.
Those are specified here.

 PAGE 32

Address Memory Address location where to Inject
Error

Further refined location of the memory
address that should reflect the injected
error. Optional

4.1.3.2.1 Memory Error Injection Details

The latest Redfish schema (V_1_17_0) added a new action property “InjectPersistentPoison” in support of
memory error injection. This document defines two additional OEM OCP actions, InjectCorrectableError
and InjectUncorrectableError. The table below provides details of these actions. Sample Redfish is
provided later in this document.

 Table 20 – Memory Errors

Property Name Schema(s) Parameters Type Description
InjectPersistentPoison Memory(Actions) PhysicalAddress, Object Injects poison to the

memory address in the
memory device.

InjectCorrectableError OcpMemory(Actions) PhysicalAddress Object Injects correctable
errors to the memory
address in the memory
device.

InjectUncorrectableError OcpMemory(Actions) PhysicalAddress Object Injects an
uncorrectable error to
the memory address in
the memory device.

	
Note:	A	future	version	of	this	document	is	expected	to	include	additional	memory	error	injection	
attributes	related	to	device	physical	location	(e.g.,	row,	column,	bank,	and	rank.)	
	
InjectPersistentPoison property defined in Memory schema.

Table 21 – PersistentPoison Properties

"InjectPersistentPoison": {
 "description": "Injects poison to a persistent memory address in the
memory device.",
 "parameters": {
 "PhysicalAddress": {
 "description": "The device physical address as a hex-encoded
string.",
 "requiredParameter": true,
 "type": "string"
 }
 },
 "type": "object",
 }
}

 PAGE 33

4.1.3.2.2 InjectCorrectableError & InjectUncorrectableError

Table 22 – Properties
 "InjectCorrectableError": {
 "description": "Injects a correctable error to a specific persistent
memory address in the memory device. ",
 "parameters": {
 "PhysicalAddress": {
 "description": "The device physical address as a hex-encoded
string.",
 "requiredParameter": true,
 "type": "string"
 }
 },
},
"InjectUncorrectableError": {
 "description": "Injects an uncorrectable error to a specific persistent
memory address in the memory device. ",
 "parameters": {
 "PhysicalAddress": {
 "description": "The device physical address as a hex-encoded
string.",
 "requiredParameter": true,
 "type": "string"
 }
 }
}

4.1.3.2.3 Actions

This section details the actions that can be performed on memory components.

Table 23 – Memory Action Properties
"@odata.id": "<Memory ResourceUri>”,
"Actions": {
 "Oem": {
 "OCP":{
 "#OcpMemory.InjectCorrectableErrors": {
 "target": "<Memory
ResourceUri>/Actions/Oem/OcpMemory.InjectCorrectableErrors",
 "@Redfish.ActionInfo": "<Memory
ResourceUri>/Oem/OCP/InjectCorrectableErrorActionInfo"
 },
 "#OcpMemory.InjectUncorrectableErrors": {
 "target": "<Memory
ResourceUri>/Actions/Oem/OcpMemory.InjectUncorrectableErrors",
 "@Redfish.ActionInfo": "<Memory
ResourceUri>/Oem/OCP/InjectUncorrectableErrorActionInfo"
 }
 }
 }

 PAGE 34

}

4.1.3.3 PCIe Errors Injection Attributes

Table 24 – PCIe Errors

Attributes Details Comments
Device Identification Uses Redfish based URL Specifies the physical or logical device

that is the target of error injection.
Error Severity PCIe Correctable

PCIe Non-Fatal
and PCIe Fatal

Each device will have a specific
enumeration of allowed errors to
inject. Those are specified here.

Error Type Correctable e.g., Bad TLP, Bad DLLP,
Receiver Error, Reply Timeout Ref [1]

Non Fatal e.g., Poisoned TLP received,
Completion Timeout, Unexpected
Completion Ref [1]

Fatal e.g., Malformed TLP, Flow
control Protocol Error, Training Error,
Receiver Overflow. Ref [1]

Each device will have a specific
enumeration of allowed errors types to
inject. Those are specified here.

4.1.3.3.1 Properties

Table 25 – PCIe Error Properties
 …
"Oem": {
 "OCP": { [
 " InjectCorrectableError ": {
 "additionalProperties": false,
 "description": "Injects Correctable Error to a specific
PCIe device.",
 "parameters": {
 “ErrorType”: {
 “enum”: [
 “ReceiverError”,
 “BadTLP”,
 “BadDLLP”,
 “ReplayTimerTimeout”,
 “ReplayNumRollover”
],
 “type”:”string”
 }
 }
 }
 "InjectUncorrectableNonFatalError": {
 "additionalProperties": false,
 "description": "Injects Uncorrectable NonFatalError to a
specific PCIe device.",

 PAGE 35

 "parameters": {
 “ErrorType”: {
 “enum”: [
 “PoisonedTLPReceived”,
 “ECRCCheckFailed”,
 “UnsupportedRequest”,
 “CompletionTimeout”,
 “CompleterAbort”,
 “UnexpectedCompletion”
],
 “type”:”string”
 }
 }
 }
 "InjectUncorrectablFatalError": {
 "additionalProperties": false,
 "description": "Injects UncorrectableFatalError to a
specific PCIe device.",
 "parameters": {
 “ErrorType”: {
 “enum”: [
 “TrainingError”,
 “DLLProtocolError”,
 “ReceiverOverflow”,
 “FlowControlProtocolError”,
 “MalformedTLP”
],
 “type”:”string”
 }
 }
 }
]
 }
}

4.1.3.3.2 Actions

Table 25 – PCI-e Error Actions
	 "@odata.id":"<PCIeDevice ResourceUri>”,
 "Actions": {
 "Oem":{
 "OCP":{
 "#OcpPCIeDevice.InjectCorrectableError": {
 "target": "<PCIeDevice
ResourceUri>/Actions/Oem/OcpPCIeDevice.InjectCorrectableError",
 "@Redfish.ActionInfo": "<PCIeDevice
ResourceUri>/Oem/OCP/InjectCorrectableErrorActionInfo"
 },
 "#OcpPCIeDevice.InjectUncorrectableNonFatalError": {
 "target": "<PCIeDevice
ResourceUri>/Actions/Oem/OcpPCIeDevice.InjectUncorrectableNonFatalError",
 "@Redfish.ActionInfo": "<PCIeDevice
ResourceUri>/Oem/OCP/InjectUncorrectableNonFatalErrorActionInfo"
 },

 PAGE 36

 "#OcpPCIeDevice.InjectUncorrectableFatalError": {
 "target": "<PCIeDevice
ResourceUri>/Actions/Oem/OcpPCIeDevice.InjectUncorrectableFatalError",
 "@Redfish.ActionInfo": "<PCIeDevice
ResourceUri>/Oem/OCP/InjectUncorrectableFatalErrorActionInfo"
 }
 }
 }

4.2 Out-of-Band Interfaces (MCTP, PLDM, and SPDM)

UBB designs are connected to the enclosing system via high-speed networking, where Redfish is the interface,

and out-of-band connections including I2C/I3C, where MCTP, PLDM, and SPDM are the interface protocols.

The implementation of the out-of-band protocols is same as with discrete GPU/Accelerator devices described in

the above sections except that it out-of-band communication is limited to specific purposes such as monitoring

high-frequency telemetry for thermal and power related features.

5 Conclusion
The management profiles for GPUs in this document provide guidance for how GPU devices can be designed and

how CSPs can manage them. These profiles reduce the amount of work required for GPU suppliers to bring new

products to market by converging CSP requirements around industry standards. Likewise, these profiles reduce

the effort and time required for CSPs to bring new GPU designs to market by enabling a higher level of code and

test re-use between different GPU parts and vendors.

6 Glossary
BMC – Baseboard Management Controller. This is a management controller present within system designs that

frequently interacts with the management of discrete accelerator devices and UBBs.

CSP – Cloud Service Provider

Hyperscaler – Cloud Service Provider

UBB – Universal baseboard; a type of accelerator delivered as a large board containing multiple GPUs and high-

speed fabric interconnect.

UBBMC – the Universal Base Board Management Controller. This is the Redfish controlled management

controller present on an OCP OAI HGX UBB board.

7 References
• OCP GPU & Accelerator RAS Requirements v0.5

• OCP Attestation of System Components

 PAGE 37

• Platform Management FRU Information Storage Definition rev. 1.3 (IPMI)

• DMTF DSP0236 revision 1.3.1 or later (MCTP)

• DMTF DSP0274 revision 1.2.1 or later (SPDM)

• DMTF DSP0240 revision 1.1.0 or later (PLDM Type 0)

• DMTF DSP0248 revision 1.2.2 or later (PLDM Type 2)

• DMTF DSP0267 revision 1.2.0 or later (PLDM Type 5)

• DMTF DSP0266 revision 1.18.0 or later (Redfish)

8 License - Open Web Foundation (OWF) CLA
Contributions to this Specification are made under the terms and conditions set forth in Open Web

Foundation Modified Contributor License Agreement (“OWF CLA 1.0”) (“Contribution License”)

by:

Google, Microsoft, NVIDIA

Usage of this Specification is governed by the terms and conditions set forth in Open Web
Foundation Modified Final Specification Agreement (“OWFa 1.0.2”) (“Specification
License”).

You can review the applicable OWFa1.0 Specification License(s) referenced above by the

contributors to this Specification on the OCP website at

http://www.opencompute.org/participate/legal-documents/. For actual executed copies of either

agreement, please contact OCP directly.

 Notes:

1. The above license does not apply to the Appendix or Appendices. The information in the

Appendix or Appendices is for reference only and non-normative in nature.

NOTWITHSTANDING THE FOREGOING LICENSES, THIS SPECIFICATION IS PROVIDED BY

OCP "AS IS" AND OCP EXPRESSLY DISCLAIMS ANY WARRANTIES (EXPRESS, IMPLIED,

OR OTHERWISE), INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY, NON-

INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, OR TITLE, RELATED TO THE

 PAGE 38

SPECIFICATION. NOTICE IS HEREBY GIVEN, THAT OTHER RIGHTS NOT GRANTED AS

SET FORTH ABOVE, INCLUDING WITHOUT LIMITATION, RIGHTS OF THIRD PARTIES WHO

DID NOT EXECUTE THE ABOVE LICENSES, MAY BE IMPLICATED BY THE

IMPLEMENTATION OF OR COMPLIANCE WITH THIS SPECIFICATION. OCP IS NOT

RESPONSIBLE FOR IDENTIFYING RIGHTS FOR WHICH A LICENSE MAY BE REQUIRED IN

ORDER TO IMPLEMENT THIS SPECIFICATION. THE ENTIRE RISK AS TO IMPLEMENTING

OR OTHERWISE USING THE SPECIFICATION IS ASSUMED BY YOU. IN NO EVENT WILL

OCP BE LIABLE TO YOU FOR ANY MONETARY DAMAGES WITH RESPECT TO ANY CLAIMS

RELATED TO, OR ARISING OUT OF YOUR USE OF THIS SPECIFICATION, INCLUDING BUT

NOT LIMITED TO ANY LIABILITY FOR LOST PROFITS OR ANY CONSEQUENTIAL,

INCIDENTAL, INDIRECT, SPECIAL OR PUNITIVE DAMAGES OF ANY CHARACTER FROM

ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS SPECIFICATION,

WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR

OTHERWISE, AND EVEN IF OCP HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

9 OCP Tenets

Openness

• This specification was developed via close and open collaboration between industry

partners and competitors.

• All specifications and interfaces produced through this effort will be available to all OCP

members.

Efficiency

• The goal of this specification is to make integration of GPUs into Hypercaler solutions

seamless, reducing toil for both the supplier and the hyperscaler consumers.

• A companion to this effort is an OCP compliance tool that will enable automated

validation of these interfaces, ensuring reduced toil and high-quality products

Impact

 PAGE 39

• This document represents the first industry initiative to standardize GPU requirements

between suppliers and hyperscale consumers.

• The advances in this document are expected to have significant impact on quality and

time-to-market for GPU systems deployed by hyperscalers.

• These advances will also be applicable and beneficial to enterprise deployments

of GPU systems.

Scale

• This specification applies to very large-scale GPU system deployments in hyperscaler

data centers.

Sustainability

• The profiles defined in this document enable cross-generational commonality for key

functionality of GPU parts, enabling logistics to support longer lifespan of GPU parts and

a healthy secondary market for these parts.

10 About Open Compute Foundation
At the core of the Open Compute Project (OCP) is its Community of hyperscale data center operators, joined by

telecom and colocation providers and enterprise IT users, working with vendors to develop open innovations

that, when embedded in product are deployed from the cloud to the edge. The OCP Foundation is responsible

for fostering and serving the OCP Community to meet the market and shape the future, taking hyperscale led

innovations to everyone. Meeting the market is accomplished through open designs and best practices, and

with data center facility and IT equipment embedding OCP Community-developed innovations for efficiency, at-

scale operations and sustainability. Shaping the future includes investing in strategic initiatives that prepare the

IT ecosystem for major changes, such as AI & ML, optics, advanced cooling techniques, and composable silicon.

Learn more at www.opencompute.org.

