
Open Compute Project Switch Abstraction Interface

http://opencompute.org 1

Switch Abstraction Interface (SAI)

A Reference Switch Abstraction Interface for OCP

2 2015-03-28

Executive Summary

Switch Abstraction Interface (SAI) defines an abstraction interface for switching ASICs. The interface is

designed to provide a vendor-independent way of controlling both switching entities like hardware

ASIC’s or NPU’s as well as software switches in a uniform manner. This specification also allows

exposing vendor-specific functionality and extensions to existing features.

Something as basic as getting switches to forward packets requires implementing multiple management

protocols and configuration generation which is undifferentiated work. Even basic routing protocols are

now undifferentiated work. SAI allows the same network software stack to program and manage many

different switch chips without undergoing any changes.

SAI helps to easily consume the latest and greatest hardware when we can run the same application stack

on all our hardware, enabled by a simple, consistent programming interface.

SAI helps us to keep the base router platform simple, consistent, and stable. Thus shifting our focus to

applications that require integrating our network with our cloud. We believe that fulfills a necessary part

of the software ecosystem and is a big step towards open networking software.

Contents

Switch Abstraction Interface (SAI) .. 1

A Reference Switch Abstraction Interface for OCP .. 1

Executive Summary .. 2

Contents .. 2

Figures... 3

Revision History .. 3

Overview ... 4

License .. 4

Background ... 5

Design ... 5

Test Plan.. 6

Checklist for Maintenance .. 7

Checklist for Governance .. 7

Roadmap ... 7

Supporting Documents ... 7

Open Compute Project Switch Abstraction Interface

http://opencompute.org 3

Figures

Figure 1: High-Level SAI Overview .. 4

Revision History

Name Date Version Description

Kamala

Subramaniam

2015-03-

28

0.1 Initial Release

Kamala

Subramaniam

2015-07-

07

0.2 Added a clause that all

maintainers/contributors

must be an OCP

member.

4 2015-03-28

Overview

Switch Abstraction Interface (SAI) is a standardized API that allows network hardware vendors to

develop innovative hardware architectures to achieve great speeds while keeping the programming

interface consistent. SAI helps easily consume the latest and greatest hardware by running the same

application stack on all the hardware, enabled by a simple, consistent programming interface. New

applications can run easier and faster on the latest hardware with lesser portability of bugs.

Figure 1: SAI in a plausible switch system architecture

Starting off we had three main goals:

1. The ability to develop SAI on different vendor platforms.

2. Demonstrate the ease of implementation of a Layer 3 IP

router

3. To deploy a SAI implementation in an operator’s network.

It’s been great to see tremendous support from several industry contributors to the SAI

v0.92. Contributions to the OCP community for the SAI initiative are submitted as proposals to the OCP

Networking SAI GitHub repository. Following a proposal submission, are discussions on the OCP

mailing list that further define the proposal. Eventually the code is also submitted to a GitHub repository.

The SAI v0.92 introduces numerous proposals including:

• Access Control Lists (ACL)

• Equal Cost Multi Path (ECMP)

• Forwarding Data Base (FDB, MAC address table)

• Host Interface

• Neighbor database, Next hop and next hop groups

• Port management
• Quality of Service (QoS)

• Route, router, and router interfaces

https://github.com/opencomputeproject/OCP-Networking-Project-Community-Contributions/tree/master/sai/doc
https://github.com/opencomputeproject/OCP-Networking-Project-Community-Contributions/tree/master/sai/inc

Open Compute Project Switch Abstraction Interface

http://opencompute.org 5

License

All of the user-space code in SAI is licensed under the Apache License, Version 2.0 (the “License”). You

may obtain a copy of this license at http://www.apache.org/licenses/LICENSE-2.0

Background

Today in our production networks, we deploy a multitude of vendors across many layers, be it ASIC

manufacturers or switch vendors. The reality is that something as basic as getting switches to forward

packets requires undifferentiated work. Be it basic Access Control List (ACL) rules, managing the

Routing Information Base (RIB), programming chips, and managing its Forwarding Information Base

(FIB). Even basic routing protocols are now all undifferentiated work. Yet, the underlying complexity of

the hardware, and the strict coupling of protocol stack software to the hardware, denies us the freedom to

pick and choose the combination of hardware and software that is the best suited for our networking

needs.

SAI helps us to keep the base router platform simple, consistent, and stable. It also reduces the time to

market, and adopt the latest available hardware. It breaks the software-hardware coupling and enables us

to choose the best fit of software and hardware on a need by application or a need by network base. By

providing simple, consistent interfaces for applications and protocol stacks that orchestrate and automate

cloud services, it helps consume the underlying complex and heterogeneous hardware easily, thereby

shifting our focus to applications that require integrating our network with our cloud. Switch Abstraction

Interface (SAI) is therefore a big step towards open networking software.

Additionally, the evolution of Software Development Kits (SDKs) cracked the wall a little between

software and hardware. But only in as much to make the chips more programmable by the applications.

SDKs are APIs commonly written in simple C like functions enabling the applications/protocol stack

access to the switching ASIC. However, different switching vendors will have different SDKs serving as

a wrapper for their proprietary algorithms. SAI breaks this wall by not just being another SDK wrapper

but by being a standardized API.

A standardized API allows network hardware vendors to develop innovative hardware architectures to

achieve great speeds while keeping the programming interface consistent. As new hardware functions are

exposed, hardware vendors can introduce extensions to the API. Revisions to the baseline standard could

occur. This would introduce change at the hardware programming level, but this change would be much

less frequent than today as it would only be required for functional changes, not simply implementation

differences.

Design

SAI consists of the following modules:

Adapter is a pluggable code module, supplied by either a vendor or control plane stack owner, that

contains either ASIC SDK code itself or client module for ASIC SDK hosted in external process and

implements the interfaces described in this specification; for all practical purposes it is equivalent of a

“user-mode driver”.

Adapter host is a Microsoft or vendor-supplied component that loads the adapter and exposes its

6 2015-03-28

functionality to the control plane stack.

Switching adapters are user-mode drivers, typically supplied by ASIC vendors. Adapters are registered

with the switching stack and then can be loaded as needed. It is a responsibility of the adapter to discover

and bind to the specified underlying hardware, including loading of or attaching to kernel-mode drivers if

needed.

Adapters are expected to be as simple as possible, ideally simple wrappers around vendor’s SDKs. Our

design strives to push the bookkeeping complexity from adapter into the adapter host wherever possible.

The adapter module is loaded into a hosting process (“adapter host”) and then initialized. During

initialization the adapter initiates discovery process of the specified instance of a switching entity. A

switching entity is a top-level object in this API.

SAI API:

The SAI interface is a local interface between the Adapter Host and Adapter. ASIC functionality is

exposed to the rest of the system by the Adapter Host through other mechanisms, which are not part of

this specification.

The API is designed to be platform-agnostic (*nix/ Windows/etc…).

The API is attribute-based to minimize compatibility issues with versioning of structures and to allow

API extensibility.

The API is a collection of C-style interfaces exposed from the adapter. These interfaces are grouped into

three categories:

- Mandatory functionality. This is a set of “core” interfaces which are required to build a basic

routing appliance. All vendors must support these interfaces and the switching stack will fail

loading of the adapter if any of these interfaces are missing.

- Optional functionality. This is a set of additional interfaces which are not required, but enable

various scenarios in a modern datacenter. Definition of these interfaces is common for all the

vendors. These interfaces are not required by the switching stack to be exposed from the adapter.

However, they become required if a given system configuration references any of these features.

- Custom functionality. This is a set of interfaces that are unique for a vendor and is not

standardized. The default adapter host is not aware of these interfaces and a custom adapter host

can be supplied by the vendor to expose these interfaces to the switching stack. We also intend to

propose a more generic framework for exposing such functionality through default supplied

adapter host in further drafts

Test Plan

The test plan is still being worked. Multiple options are being looked at such as using UNH for testing

resources, Google test framework, and Barefoot’s P4 software emulator. The test_sai and build_sai

applications that we are looking at writing will provide levels of SAI compliancy. As the SAI program

grows, we expect this testing program will increase substantially.

Open Compute Project Switch Abstraction Interface

http://opencompute.org 7

Checklist for Maintenance

Currently the code is maintained in GitHub and the development uses GitHub-based best practices. All

code changes are reviewed publicly (using GitHub’s online code review tools) and approved by someone

with commit rights. The current list of committers/maintainers includes:

• Microsoft

• Dell

• Mellanox

• Broadcom

• Cavium

It is mandatory that all entities (including the ones listed above) with code approval or commit capability,

i.e., are either committers/maintainers into the SAI project be OCP members. We are open to expanding

the committers list as other contributors/authors emerge. New contributors/authors cannot become

committers/maintainers without first being an OCP member.

In the event that all maintainers are permanently unavailable, a duly appointed representative of the Open

Compute Project may take over the project.

Software releases will be made as time and major features are committed. While many open source

projects with regular committers have a time-based release model, at least for the near future until the

projects popularity increases, we will follow a feature-based release schedule.

Checklist for Governance

This is the list of current governance sites which may change with acceptance into OCP.

Website: N/A

Mailing list: opencompute-networking@lists.opencompute.org

IRC: N/A

Mirror: N/A

GitHub: https://github.com/opencomputeproject/OCP-Networking-Project-Community-Contributions

Wiki: http://www.opencompute.org/wiki/Networking

Roadmap

There are three different future directions that make sense with SAI: building applications for the SAI,

building an open control stack on top of the SAI, and architecting SAI to work on multi-chip/multi-

chassis platforms.

Building applications for the SAI:

• build_sai, test_sai, debug_sai, etc.

Control Stack

• Build a Control Plane Stack (CPS) that works in conjunction with the SAI to make it vendor

agnostic is the truest sense.

Multi-chip/Multi-chassis:

mailto:opencompute-networking@lists.opencompute.org
https://github.com/opencomputeproject/OCP-Networking-Project-Community-Contributions

8 2015-03-28

• Architecting SAI to work on multi-chip/multi-chassis platforms

Supporting Documents

The majority of the technical documents live in the GitHub directory in the source, including:

• SAI architecture

• Individual proposals

• SAI code

https://github.com/opencomputeproject/OCP-Networking-Project-Community-Contributions

	Switch Abstraction Interface (SAI)
	A Reference Switch Abstraction Interface for OCP
	Executive Summary
	Contents
	Figures
	Revision History
	Overview
	License
	Background
	Design
	Test Plan
	Checklist for Maintenance
	Checklist for Governance
	Roadmap
	Supporting Documents

